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Methods Section for the disproportionality paper 

 

1. Background: Disproportionality Analysis and Spontaneous Reports 

Disproportionality analysis methods for drug safety surveillance represent the primary class 

of analytic methods for analyzing data from spontaneous report systems (SRSs). SRSs 

receive reports that comprise of one or more drugs, one or more adverse events (AEs), and 

possibly some basic demographic information (in addition to narrative and text data). Table 

1 below shows a conceptual representation of a typical SRS entry. 

 
 
Table 1: A conceptual representation of a typical entry in an SRS database 
Age Sex Drug 1  Drug 2  … Drug 

15000  
AE        
1  

AE      
2  

… AE 
16000  

42 Male No Yes … No Yes No … Yes 
 
 

Disproportionality analysis methods include the multi-item gamma-Poisson shrinker 

(MGPS), proportional reporting ratios (PRR), reporting odds ratios (ROR), and Bayesian 

confidence propagation neural network (BCPNN). The methods search SRS databases for 

“interesting” associations and focus on low-dimensional projections of the data, specifically 

2-dimensional contingency tables. Table 2 shows a typical table.   

 

 
Table 2: A fictitious 2-dimensional projection of an SRS database 

 AE j  = 
Yes 

AE j  = 
No 

Total 

Drug i  = Yes w00=20 w01=100 120 
Drug i  = No w10=100 w11=980 1080 

Total 120 1080 1200 
 

 
 
The basic task of a DPA method then is to rank order the tables in order of 

“interestingness.” Different DPA methods focus on different statistical measures of 

association as their measure of “interestingness”. MGPS focuses on the “reporting ratio” 

(RR). The RR for the drug i – adverse event j combination (RRij) is the observed number of 

occurrences of the combination (20 in the example above) divided by the expected number 
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of occurrences. MGPS computes the expected value under a model of independence. 

Specifically, in the example above, overall, AE j occurs in 10% of the reports (120/1200). 

Thus, if drug i and adverse event j are statistically independent, 10% of the reports 

containing drug i should include AE j, that is 12 reports in this case. Thus the RR for this 

example is 20/12 or 1 2/3; this combination occurred about 67% more often than expected. 

 

Natural (though not necessarily unbiased) estimates of various probabilities emerge from 

tables like Table 2. For example, one might estimate the conditional probability of AE j 

given drug i by w00/ w00+ w01 (i.e. 20/120 in the example above). That is, the observed 

fraction of drug i reports that listed AE j. Table 3 below lists the formulae for the various 

measures of association in common use, along with their probabilistic interpretation. Here 

“

 

¬drug” for example denotes the reports that did not list the target drug. PRR is the 

“Proportional Reporting Ratio”, ROR is the “Reporting Odds Ratio,” and IC is the 

“Information Component” used by BCPNN. [2,3,6]  

 
 
Table 3: Common measures of association for 2 X 2 tables in SRS analyses 
 
Measure of Association Formula Probabilistic Interpretation 
RR 
Reporting Ratio 

w00 * (w00 + w01 + w10 + d) 
    ----------------------------------- 
   (w00 + w10) * (w00 + w01) 

 

Pr(ae | drug)

Pr(ae)  
PRR 
Proportional Reporting 
Ratio 

 
       w00 / (w00 + w01) 
             ----------- 
       w10 / (w10 + w11) 

 

Pr(ae | drug)

Pr(ae |¬drug)  

ROR 
Reporting Odds Ratio 

           w00 / w10 
             ---------- 
           w01 / w11 

 

Pr(ae | drug) /Pr(¬ae | drug)

Pr(ae |¬drug) /Pr(¬ae | drug)  
Information Component    w00 * (w00 + w01 + w10 + w11) 

log 2 -------------------------------------- 
       (w00 + w10) * (w00 + w01) 

 

log2
Pr(ae | drug)

Pr(ae)  

 
 

All four of these measures make sense – in each case, a particular drug that is more likely to 

cause a particular AE than some other drug will typically receive a higher score. Similarly, if 

an AE and a drug are stochastically independent, all measures will return a null value. 

However, all four are subject to sampling variability, i.e. a different set of AE reports from 

the same “population” will not give exactly the same value of the measure of association. 
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This may be particularly the case with large sparse databases. Due to the Law of Large 

Numbers, this statistical variability diminishes as the sample size increases. In the SRS 

context, however, the count in the “w00” cell is often small, leading to substantial variability 

(and hence uncertainty about the true value of the measure of association) despite the often 

large numbers of reports overall. 

 

PRR and ROR do not address the variability issue whereas MGPS and BCPNN adopt a 

Bayesian approach to address the issue. GPS places a prior distribution on RRs that 

encapsulates a prior belief that most RRs are close to the average value of all RR’s (i.e., close 

to 1). Only in the face of substantial evidence from the data does MGPS return an RR 

estimate that is substantially larger than one. Thus, for example, an RR of 1,000 that derives 

from an observed count of w00=1 might result in a MGPS RR estimate (Empirical Bayesian 

Geometric Mean or EBGM) of 1.5 (i.e. the crude RR is shrunk towards a value of 1) 

whereas an RR of 1,000 that derives from an observed count of w00=100 might result in a 

EBGM RR estimate of close to 1,000. For the specific Bayesian setup that MGPS uses, 

observed counts in excess of 10 result in RR estimates that typically receive essentially no 

shrinkage, although in practice larger differentials have been observed depending on the 

thresholds used. [5,7,8]  

 

The EBGM score is the mean of the posterior distribution of the true RR. Other summaries 

are possible. For example, DuMouchel mentions “EB05”. [9]  This is the 5th percentile of the 

posterior distribution – meaning that there is a 95% probability that the “true” RR exceeds 

the EB05. Since EB05 is always smaller than EBGM this, in a sense, adds extra shrinkage 

and represents a more conservative choice than EBGM.  

  

2. Computing the Disproportionality Metrics 
 
Given a two-by-two table such as Table 2, the subsections below provide formulae for the 

various disproportionality metrics. 

 
2.1   Proportional Reporting Ratio 
 

 

PRR =
w
00
w
00

+ w
01

w
10
w
10

+ w
11
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2.2   Reporting Odds Ratio 
 

 

ROR =
w
00
w
10

w
01
w
11

 

 
2.3   MGPS 
 
Let w00(i,j) denote the w00 entry for the two-by-two table for the ith drug and the jth 

condition. Assume that each w00(i,j) is a draw from a Poisson distribution with mean µ(i,j). 

Let µ(i,j) = λ(i,j)*E(i,j), where E(i,j)=w0+(i,j)*w+1(i,j)/w++(i,j), i.e., the expected value of w0(i,j) 

under independence and is assumed to be known. The goal is to estimate the values of the 

λ’s . A λ(i,j) far from one supports the notion that drug i and condition j are not 

independent. MGPS is a Bayesian procedure and starts with a particular five-parameter prior 

distribution for the collection of λ’s: 
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where 

 

g(!;",#)  denotes a gamma density with α/β. The “EBGM” measure is defined as: 

 

EBGM(i, j) = 2EB log2 (i, j ) 
where: 

  

 

EB log2 = Qw ! ("1 + w00 # log($1 + E)[ ] + (1#Qw )! ("n + w00 # log($2 + E)[ ]( ) /log(2)

Qw = Pf (w00;"1,$1,E) / Pf (w00;"1,$1,E) + (1# P) f (w00;"2,$2,E)[ ],  and

f (w00;",$,E) = (1+ $ /E)#w00 (1+ E /$)#" %(" + w00) /%(")n!.

 

 
MGPS uses an empirical Bayes approach and chooses α1, β1, α2, β2, and P to maximize: 
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For further details see reference [9]. 
 
2.4   BCPNN 
 
The BCPNN method estimates the Information Component (IC) as: 

 

IC(i, j) = log2
w00(i, j) +1/2

E(i, j) +1/2
 

 
For details see reference [1,2]. 
 



 5 

Many DPA analyses consider stratified versions of these metrics, stratifying by age, sex, and 

year of report, for example. See Appendix A for further details and specific formulae for 

stratified metrics. 

 
 
3. Applying  DPA to Longitudinal Data 
 
In the context of spontaneous report systems, some authors use the term “signal of 

disproportionate reporting” (SDR) when discussing associations highlighted by DPA 

methods (Hauben et al., 2005, Hauben and Reich, 2005). In reality, most SDRs that emerge 

from spontaneous report databases represent noise because the reports are associated with 

treatment indications (i.e., confounding by indication), co-prescribing patterns, co-morbid 

illnesses, protopathic bias, channeling bias, or other reporting artifacts, or, the reported 

adverse events are already labeled or are medically trivial. In this sense, SDRs generate 

hypotheses. Furthermore, spontaneous report databases present a number of well-

documented limitations such as under-reporting, over-reporting, and duplicate-reporting, 

they fail to provide a denominator – how many individuals are actually consuming drug, and 

generally have limited temporal information with regard to duration of exposure and the 

time order of exposure and condition (Hauben et al., 2005). The richer context of 

longitudinal data (such as claims databases or electronic health records) affords the 

possibility of more refined analysis to address some of these artifacts. Nonetheless, given the 

wide acceptance of DPA methods in pharmacovigilance, application of DPA methods to 

longitudinal data may prove useful. 

   

A key step in the application of DPA methods to any data is the mapping of the data into 

drug-condition two-by-two tables. With longitudinal data many choices present themselves. 

In this paper we consider three particular approaches, “distinct patients,” “SRS,” and 

“Modified SRS.” 

 

In what follows we will illustrate the approaches using the example of Figure 1. Figure 1 

shows three patients. Patient 1 consumed drug A during two separate drug eras. The patient 

experienced condition X three times during these eras, twice during the first era and once 

during the second. Patient 2 also had three drug eras but with three separate drugs, A, B, and 



 6 

C. Finally Patient 3 had two overlapping drug eras, one with drug B and one with drug C. 

The patient experienced condition O while taking both B and C, and conditions O and X 

after the drug eras. 

 

Note we treat conditions as if they occur at distinct moments in time. In fact the data may 

contain condition “eras” and what we are utilizing is the timestamp of the beginning of the 

era. Drug eras, on the other hand, play an important role in our approach. A drug era 

represents a continuous period of drug usage, possibly augmented with an additional off-

drug period. We refer to the optional off-drug period as a surveillance window and discuss 

this further below. In practice, defining the on-drug portion of the drug era itself requires 

design decisions. For example, should two 30-day prescriptions with a one-day gap between 

the two prescriptions be considered one drug era or two? We return to this issue later. 

 

We now consider three different approaches to constructing the two-by-two table for drug 

A and condition X. Appendix B provide a formal mathematical description. 

  

 
Figure 1. A longitudinal dataset with three patients, three distinct drugs (A, B, and C) and 

two distinct conditions (X and O).  

 

3.1 Distinct Patients 

In the “distinct patients” approach to table construction, w00+w01+w10+w11 (denoted w++) 

equals the total number of patients in the database. w00 is the number of patients that had a 

drug A era and experienced condition X during a drug A era. w01 is the number of patients 

that had a drug A era and did not experience condition X during a drug A era. w10 is the 

number of patients that did not have a drug A era but experienced condition X. w11 is the 

number of patients that did not have a drug A era and never experienced condition X. Thus, 

for the example of Figure 1, w00=1 (patient 1), w01=1 (patient 2), w10=1 (patient 3), and w11=0. 

Note that w++=3. 
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3.2 SRS 

The second approach attempts to mimic what SRS reports the longitudinal data would 

generate. w00 is the number of distinct X conditions the occur during drug A eras. w01 is the 

number of distinct non-X conditions that occur during drug A eras. w10 is the number of 

distinct X conditions that occur during non-A drug eras. w11 is the number of distinct non-X 

conditions that occur during non-A drug eras. Thus, for the example of Figure 1, w00=3 

(A+X1, A+X2, A+X3), w01=0, w10=1 (B+X5), and w11=2 (B+O1,C+O1). 

  
 
3.3 Modified-SRS 

The final approach attempts to mimic what SRS reports the longitudinal data would generate 

plus some additional counts that attempt to patch obvious weaknesses of the SRS approach. 

Specifically, in the SRS approach, drug eras in which no conditions occur are ignored, 

thereby discarding potentially useful information favoring the safety of a drug. Similarly, 

conditions that occur while no drug eras are active are also ignored. This also discards 

information that might exonerate a drug. The modified SRS approach counts “non-event” 

drug eras and “non-drug” conditions. In this approach, as with SRS, w00 is the number of 

distinct X conditions the occur during drug A eras. w01 however, is the number of distinct 

non-X conditions that occur during drug A eras plus the number of A eras in which no 

events occur. w10 is the number of distinct X conditions that occur outside drug A eras. w11 is 

the number of distinct non-X conditions that occur during non-A drug eras plus the number 

of non-A drug eras with no conditions plus the number of non-X conditions with no drug 

era. Thus, for the example of Figure 1, w00=3 (A+X1, A+X2, A+X3), w01=1 (patient 2’s A 

era), w10=3 (X4, B+X5, X6), and w11=4 (patient 2’s C era, B+O1,C+O1, O2). 

 
 
Our application of DPA to longitudinal data also makes a distinction between incident and 

prevalent conditions. The incident case only considers the first occurrence of each event, 

whereas the prevalent case (considered in the above example) considers all occurrences. 

Thus, for the example above, the incident analysis would proceed as above but only consider 

the first event of each type. Figure 2 illustrates the modified dataset used in an incident 

analysis. Note that our use of the term “incident” does necessarily coincide with standard 
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use in epidemiological practice/ In particular, we not require an event-free “clean” period 

prior to first condition occurrence.  

 

 
Figure 2. A longitudinal dataset with three patients, three distinct drugs (A, B, and C) and 

two distinct conditions (X and O). Incident conditions only. 
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APPENDIX A 
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APPENDIX B 
 
This appendix provides a formal mathematical definition of the alternative methods of 
constructing two-by-two tables from longitudinal data for DPA. 
 
Notation 
Let 

 

yict = 1 if patient i has condition c at time t, and

 

yict = 0  otherwise, i=1,…,I, c=1,…C, 
and t=1,…,T. Let 

 

x
idt

= 1 if patient i “takes” drug d at time t, and

 

x
idt

= 0 otherwise, i=1,…,I, 
d=1,…D, and t=1,…,T. This may include the user-defined off-drug “surveillance” window. 
Let   

 

yict
*

= 1 if yict =1 and yics = 0 for all s < t ,  0 otherwise. Let 

 

z
it

= 1 if patient i has 
coverage at time t, 0 otherwise. 
 
Let 

 

D
id

 be the set of all ordered pairs (r,s), r,s ∈{1,…,T}, where 

 

x
idr

= 1 and (r=1 or 

 

x
id (r!1)

=0), 

 

x
ids

= 1 and (s=T or 

 

x
id (s+1)

=0), and 

 

yict = 0  for all c and all t ∈[r,…,s], and 

 

z
it

= 1 
for all t ∈[r,…,s]. This defines condition-free periods of continuous drug exposure. 
 
Define I(x) = 1 if x>0, 0 otherwise. 
 
 
Prevalent Conditions, Distinct Patients 

 

 

Prevalent Conditions, SRS 

 

 

 

 

w
00

= I
i

! ( xidt yict )
t

!

 

w
01

= I( zit xidt ) !
t

" I( xidt yict )
t

"
# 
$ 
% 

& 
' 
( i

"

  

 

w
10

= (1! I( zit xidt )) "  

t

# I( zit yict )
t

#
$ 
% 
& 

' 
( 
) i

#

  

 

w
11

= (1! I( zit xidt )) "  

t

# (1! I( zit yict ))
t

#
$ 
% 
& 

' 
( 
) i

#

 

w
00

= xidt yict
t

!
i

!



 13 

 

 

Prevalent Conditions, Modified-SRS 

 

 

 

 

 

For incident conditions replace 

 

yict  in the above definitions by 
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