Methods Section for the disproportionality paper

1. Background: Disproportionality Analysis and Spontaneous Reports

Disproportionality analysis methods for drug safety surveillance represent the primary class
of analytic methods for analyzing data from spontaneous report systems (SRSs). SRSs
receive reports that comprise of one or more drugs, one or more adverse events (AEs), and
possibly some basic demographic information (in addition to narrative and text data). Table

1 below shows a conceptual representation of a typical SRS entry.

Table 1: A conceptual representation of a typical entry in an SRS database

Age | Sex Drug1 Drug2 ... Drug AE AE .. AE
15000 1 2 16000
42 Male No Yes ... No Yes No ... Yes

Disproportionality analysis methods include the multi-item gamma-Poisson shrinker
(MGPS), proportional reporting ratios (PRR), reporting odds ratios (ROR), and Bayesian
confidence propagation neural network (BCPNN). The methods search SRS databases for
“Interesting” associations and focus on low-dimensional projections of the data, specifically

2-dimensional contingency tables. Table 2 shows a typical table.

Table 2: A fictitious 2-dimensional projection of an SRS database
AEj= AEj = Total
Yes No
Drug i = Yes wy=20 w,,=100 120
Drug i = No w,,=100 w,;,; =980 1080
Total 120 1080 1200

The basic task of a DPA method then is to rank order the tables in order of
“interestingness.” Different DPA methods focus on different statistical measures of
association as their measure of “interestingness”. MGPS focuses on the “reporting ratio”
(RR). The RR for the drug 7 — adverse event j combination (RR)) is the observed number of

occurrences of the combination (20 in the example above) divided by the expected number



of occurrences. MGPS computes the expected value under a model of independence.
Specifically, in the example above, overall, AE j occurs in 10% of the reports (120/1200).
Thus, if drug 7 and adverse event ; are statistically independent, 10% of the reports
containing drug 7 should include AE J, that is 12 reports in this case. Thus the RR for this

example is 20/12 or 1 2/3; this combination occurred about 67% more often than expected.

Natural (though not necessarily unbiased) estimates of various probabilities emerge from
tables like Table 2. For example, one might estimate the conditional probability of AE ;
given drug 7 by w,,/ wyt w, (e. 20/120 in the example above). That is, the observed
fraction of drug / reports that listed AE /. Table 3 below lists the formulae for the various

measures of association in common use, along with their probabilistic interpretation. Here

«=drug” for example denotes the reports that did not list the target drug. PRR is the
“Proportional Reporting Ratio”, ROR is the “Reporting Odds Ratio,” and IC is the
“Information Component” used by BCPNN. [2,3,6]

Table 3: Common measures of association for 2 X 2 tables in SRS analyses

Measure of Association Fornula Probabilistic Interpretation
RR Wog * (Wog + Wyy + Wy + d) Pr(ae | drug)
Reporting Ratio Pr(ae
(Woo + W10) * (Wog + W) (ae)

IIZE)R - - Wog | (Wog + Wyy) Prae \drug)

portional Reporting | ~% % Pr(ae |—drug)
Ratio Wig | (Wyo+ Wyy)
ROR ﬂ/oo/ Rl Pr(ae | drug) /Pr(—ae | drug)
Reporting Odds Ratio wy, | Wy, Pr(ae |—drug) /Pr(—ae | drug)
Information Component Wog * Wy + Wy + Wiy + ;) Pr(ae | drug)

log , 253 Pr(ae)

(Woo + Wy9) * (Woo + 1yy)

All four of these measures make sense — in each case, a particular drug that is more likely to
cause a particular AE than some other drug will typically receive a higher score. Similarly, if
an AE and a drug are stochastically independent, all measures will return a null value.
However, all four are subject to sampling variability, i.e. a different set of AE reports from

the same “population” will not give exactly the same value of the measure of association.



This may be particularly the case with large sparse databases. Due to the Law of Large
Numbers, this statistical variability diminishes as the sample size increases. In the SRS
context, however, the count in the “w,,” cell is often small, leading to substantial variability
(and hence uncertainty about the true value of the measure of association) despite the often

large numbers of reports overall.

PRR and ROR do not address the variability issue whereas MGPS and BCPNN adopt a
Bayesian approach to address the issue. GPS places a prior distribution on RRs that
encapsulates a prior belief that most RRs are close to the average value of all RR’s (i.e., close
to 1). Only in the face of substantial evidence from the data does MGPS return an RR
estimate that is substantially larger than one. Thus, for example, an RR of 1,000 that derives
from an observed count of »,,=1 might result in a MGPS RR estimate (Empirical Bayesian
Geometric Mean or EBGM) of 1.5 (i.e. the crude RR is shrunk towards a value of 1)
whereas an RR of 1,000 that derives from an observed count of »,,=100 might result in a
EBGM RR estimate of close to 1,000. For the specific Bayesian setup that MGPS uses,
observed counts in excess of 10 result in RR estimates that typically receive essentially no

shrinkage, although in practice larger differentials have been observed depending on the

thresholds used. [5,7,8]

The EBGM score is the mean of the posterior distribution of the true RR. Other summaries
are possible. For example, DuMouchel mentions “EB05”. [9] This is the 5" percentile of the
posterior distribution — meaning that there is a 95% probability that the “true” RR exceeds
the EBO5. Since EBO5 is always smaller than EBGM this, in a sense, adds extra shrinkage

and represents a more conservative choice than EBGM.

2. Computing the Disproportionality Metrics

Given a two-by-two table such as Table 2, the subsections below provide formulae for the
various disproportionality metrics.

2.1 Proportional Reporting Ratio

PRR = Woo/Woo + W,
WIO/WIO +wy,



2.2 Reporting Odds Ratio

ROR = Woo/ Wi
W01/W11

2.3 MGPS

Let wy(zy) denote the u, entry for the two-by-two table for the /th drug and the jth
condition. Assume that each (7)) is a draw from a Poisson distribution with mean u(z).
Let (i) = M) *¥E(z), where E(i)=m,. (i))*w,,(5))/ w, . (i), i.e., the expected value of w,(iy)
under independence and is assumed to be known. The goal is to estimate the values of the
As. A A(z)) far from one supports the notion that drug 7 and condition ; are not
independent. MGPS is a Bayesian procedure and starts with a particular five-parameter prior
distribution for the collection of A’s:

m(A:04.B,.0,.,.P) = Pg(A:0t,. ) + (1= P)g(A:1,.3,)
where g(A;0,B) denotes a gamma density with o/ 8. The “EBGM” measure is defined as:

EBGM(i, j) = 2" &)

where:
EBlog, = (0, [w (e, + wy, —log(B, + E)|+ (- 0,)[w(@r, +wy, —log(B, + E)]) /log(2)

0, = Pf(We30,, B E)[Pf (We304,B,,E) + (1= P) f (W30, B5,E)], and
Ffwea,BE)=(1+B/E)™ 1+ E/B)“T(0t+wy,)/T(c)n!.

MGPS uses an empirical Bayes approach and chooses &, 3, @, B,, and P to maximize:
HPf(Woo(i,j);Ol] BEG ) + A= P) f(weo(0,)):05.8,, E@0.))) .

For further det;ijls see reference [9].

24 BCPNN

The BCPNN method estimates the Information Component (IC) as:
Woo(@,7) +1/2

ICG.D=log, =i

For details see reference [1,2].



Many DPA analyses consider stratified versions of these metrics, stratifying by age, sex, and
year of report, for example. See Appendix A for further details and specific formulae for

stratified metrics.

3. Applying DPA to Longitudinal Data

In the context of spontaneous report systems, some authors use the term “signal of
disproportionate reporting” (SDR) when discussing associations highlighted by DPA
methods (Hauben et al., 2005, Hauben and Reich, 2005). In reality, most SDRs that emerge
from spontaneous report databases represent noise because the reports are associated with
treatment indications (i.e., confounding by indication), co-prescribing patterns, co-morbid
illnesses, protopathic bias, channeling bias, or other reporting artifacts, or, the reported
adverse events are already labeled or are medically trivial. In this sense, SDRs generate
hypotheses. Furthermore, spontaneous report databases present a number of well-
documented limitations such as under-reporting, over-reporting, and duplicate-reporting,
they fail to provide a denominator — how many individuals are actually consuming drug, and
generally have limited temporal information with regard to duration of exposure and the
time order of exposure and condition (Hauben et al., 2005). The richer context of
longitudinal data (such as claims databases or electronic health records) affords the
possibility of more refined analysis to address some of these artifacts. Nonetheless, given the
wide acceptance of DPA methods in pharmacovigilance, application of DPA methods to

longitudinal data may prove useful.

A key step in the application of DPA methods to any data is the mapping of the data into
drug-condition two-by-two tables. With longitudinal data many choices present themselves.
In this paper we consider three particular approaches, “distinct patients,” “SRS,” and

“Modified SRS.”

In what follows we will illustrate the approaches using the example of Figure 1. Figure 1
shows three patients. Patient 1 consumed drug A during two separate drug eras. The patient
experienced condition X three times during these eras, twice during the first era and once

during the second. Patient 2 also had three drug eras but with three separate drugs, A, B, and



C. Finally Patient 3 had two overlapping drug eras, one with drug B and one with drug C.
The patient experienced condition O while taking both B and C, and conditions O and X

after the drug eras.

Note we treat conditions as if they occur at distinct moments in time. In fact the data may
contain condition “eras” and what we are utilizing is the timestamp of the beginning of the
era. Drug eras, on the other hand, play an important role in our approach. A drug era
represents a continuous period of drug usage, possibly augmented with an additional off-
drug period. We refer to the optional off-drug period as a surveillance window and discuss
this further below. In practice, defining the on-drug portion of the drug era itself requires
design decisions. For example, should two 30-day prescriptions with a one-day gap between

the two prescriptions be considered one drug era or two? We return to this issue later.

We now consider three different approaches to constructing the two-by-two table for drug

A and condition X. Appendix B provide a formal mathematical description.

Patient 1 A—X2% A A X5 A
Patient 2 X, A A B X5 B
Patient 3 B—e; B0, %
time >

Figure 1. A longitudinal dataset with three patients, three distinct drugs (A, B, and C) and

two distinct conditions (X and O).

3.1 Distinct Patients

In the “distinct patients” approach to table construction, wy,+mwy,+w,,+w;, (denoted w, )
equals the total number of patients in the database. »,, is the number of patients that had a
drug A era and experienced condition X during a drug A era. w, is the number of patients
that had a drug A era and did not experience condition X during a drug A era. »,, is the
number of patients that did not have a drug A era but experienced condition X. »,, is the
number of patients that did not have a drug A era and never experienced condition X. Thus,
for the example of Figure 1, w,,=1 (patient 1), w,, =1 (patient 2), »,,=1 (patient 3), and »,,=0.

Note that w,,=3.



3.2 SRS

The second approach attempts to mimic what SRS reports the longitudinal data would
generate. ,, is the number of distinct X conditions the occur during drug A eras. », is the
number of distinct non-X conditions that occur during drug A eras. ;, is the number of
distinct X conditions that occur during non-A drug eras. »,, is the number of distinct non-X

conditions that occur during non-A drug eras. Thus, for the example of Figure 1, ,,=3

(A+X, A+Xo, A+Xy), 2, =0, ;=1 B+X;), and »,,=2 (B+O,,C+O)).

3.3 Modified-SRS

The final approach attempts to mimic what SRS reports the longitudinal data would generate
plus some additional counts that attempt to patch obvious weaknesses of the SRS approach.
Specifically, in the SRS approach, drug eras in which no conditions occur are ignored,
thereby discarding potentially useful information favoring the safety of a drug. Similarly,
conditions that occur while no drug eras are active are also ignored. This also discards
information that might exonerate a drug. The modified SRS approach counts “non-event”
drug eras and “non-drug” conditions. In this approach, as with SRS, », is the number of
distinct X conditions the occur during drug A eras. ;,, however, is the number of distinct
non-X conditions that occur during drug A eras plus the number of A eras in which no
events occur. », is the number of distinct X conditions that occur outside drug A eras. w,; is
the number of distinct non-X conditions that occur during non-A drug eras plus the number
of non-A drug eras with no conditions plus the number of non-X conditions with no drug
era. Thus, for the example of Figure 1, #,=3 (A+X,, A+X,, A+X;), w,, =1 (patient 2’s A
era), w,,=3 (X, B+X;, X), and »,;=4 (patient 2’s C era, B+0O,,C+0O,, O,).

Our application of DPA to longitudinal data also makes a distinction between incident and
prevalent conditions. The incident case only considers the first occurrence of each event,
whereas the prevalent case (considered in the above example) considers all occurrences.
Thus, for the example above, the incident analysis would proceed as above but only consider
the first event of each type. Figure 2 illustrates the modified dataset used in an incident

analysis. Note that our use of the term “incident” does necessarily coincide with standard



use in epidemiological practice/ In particular, we not require an event-free “clean” period
b

prior to first condition occurrence.

Patient 1 A—X; A A A
Patient 2 X, A A B B
Patient 3 B—o; B X%
time >

Figure 2. A longitudinal dataset with three patients, three distinct drugs (A, B, and C) and

two distinct conditions (X and O). Incident conditions only.
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APPENDIX A

i— stratum number, i=12,..,M.

PRR:
leoox(Ww* )/ N
PRR score—zy,,lmx(ww W)/ N,
PRRO5:

PRROS _score = PRR *exp(—1.645%0),
Z(( 00 W0 ) Wino HWit Y Wio0+ W00 )~Wio ™ Wng*N;) | N} .
z 100 (Wi +W,; 11)/N2 10 Wioo+Wino)/ N; i

where o*

ROR:

Wi /N,
ROR_score—Z -

Z,.W,mm/zv
RORO05:
RORO0S5 _score = ROR *exp(—1.645*0),
Z( w00 Wi WiooWin / NP
203 Wiooii I NiY?
2( 0t D WioWing+Wior+Wino W0y / N7
2" Wi Ni ' Wiaino/ N;
Z( o1 o) Wio o | N}
203 WioWio I N)Y?

where o’

SIGNED CHI-SQUARE:
Signed _Chi _square_score = sign(Y, Wy~ 3, Wipg + Wyo )Wy + W)/ N)*

QWiOO*Z(Wmo‘*Wm)(ono Wio)/N; )
Zi«VViOO Wio) W io + Wi Y Wioo +Wiso )\ Wigr +iy ) Y AN (N, —1)))
BCPNN:

BCPNN _score= 10g2( ' 2,.W,-00+1/2 }

2.(W100+Wi01\)/<>Wi00+Wi10)+1/2
i

BCPNNO5:
BCPNNOS _score=1log,(z), where z is a solution to the following equation:

(e+1/2)”*”2 lnH/Z 1 —(n+1/2)1d/1 0. 05

T(nt1/2)

0

where e= Wi +W; 01]3/(.1’[/1'00"'”/110) _2 00
EBGMO5:

is a solution to the following equation:
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EBGM 05 _score

(Ao +n, B, +e,a,+n,B, +e,0, )dA=0.05,

0
where
(Ao, +n, B, +eo, +n,B,+e,0,)=

:Pg(l’alﬂﬁl)—k(l_P)g(/l’azaﬁzl

g0, B) =i BU A e,

Q — Pf(n,04,B,€)
n Pf(n,al,Bl,e)+(1—P)f(n,a2 ’:Bbe) ?

f,o,Be) =T 1+L) " (1+4)7,

_ (FigotWio)Wioo+Wiro) _ .
€= N, =W
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APPENDIX B

This appendix provides a formal mathematical definition of the alternative methods of
constructing two-by-two tables from longitudinal data for DPA.

Notation

Let y,, =1 if patient 7 has condition ¢ at time 7, and y,, =0 otherwise, /=1,...,I, =1,...C,
and 7=1,...,T. Let x,, =1 if patient 7 “takes” drug & at time # and x,,, = 0 otherwise, /=1,...,1,
d=1,...D, and 7=1,...,T. This may include the user-defined off-drug “surveillance” window.
Let y; =1lify,, =landy, =0 forall s<t, 0 otherwise. Let z, =1 if patient  has
coverage at time 7, 0 otherwise.

Let D,, be the set of all ordered pairs (r,5), s € {1,...,T}, where x,, =1 and (=1 or
xid(r_l)ZO), x,,,=1and (s=Tor xid(m):O), and y,, =0 forallcand all 7€ [r,...6], and z, =1

for all 7€ [r,...,s]. This defines condition-free periods of continuous drug exposure.

Define I(x) = 1 if x>0, 0 otherwise.

Prevalent Conditions, Distinct Patients

Wy = Zl(zxidtyict)
Wor = Z{I(zzizxidr)_I(zxidtyicf)}

i

Wi = Z{(l_ I(Zzizxidz)) X I(Zziryicl)}

Wiy = Z{(l_ I(z ZyXig)) X (1- I(Z Zityict))}

Prevalent Conditions, SRS

Wy = Z 2 XiarYict
i t
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= Z z Z'xidtyic't

it c'#c

= 22 Z'xid'tyict

it d'#d
= ZZ szid’tyic’t

it d'#dc’#c

Prevalent Conditions, Modified-SRS

= Z z XiarYict
i t

i t c'#c

Wor = 2{2 zxidryic’r + |Did |}

Wiy = Z{Z{ Y XV + Yz (- 1<2x,d,>>}}

i t d’#d

2{2 2 zxzdtyu ‘t + 2|Dtd |+ 2 zznym(l I(Zx,dz))}

i t d’#dc’#c d’#d t c¢'#c

. . .. . .. *
For incident conditions replace y,, in the above definitions by y,,.
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