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1. Introduction

Increasing scientific, regulatory and public scrutiny focuses on the obligation of the medical
community, pharmaceutical industry and health authorities to ensure that marketed drugs have
acceptable benefit-risk profiles. This is an intricate and ongoing process that begins with
careful pre-approval studies but continues after regulatory market authorization when the drug
is in widespread clinical use. In the latter environment, surveillance schemes based on
spontaneous reporting system (SRS) databases represent a cornerstone for the eatly detection
of drug hazards that are novel by virtue of their clinical nature, severity and/or frequency. SRS
databases collect voluntary reports of adverse events made directly to the regulator or to the
manufacturer of the product. Such spontaneous report databases present a number of well-
documented limitations such as under-reporting, over-reporting, and duplicate reporting.
Furthermore, SRS databases fail to provide a denominator — the number of individuals that are
actually consuming a drug — and generally have limited temporal information with regard to
duration of exposure and the time order of exposure and condition (Hauben et al., 2005).

Despite the limitations inherent in SRS-based pharmacovigilance, analytic methods for
spontaneous report databases have attracted considerable attention in the last decade, and
several different methods have become well established, both in commercial software products
and in the medical literature. A number of methods have been applied to the analysis of
spontaneous reports (e.g., Praus et al., 1993, vanPuijenbroek et al., 2000 Orre et al., 2005, and
Mammadov et al., 2007) including some recent work focused on Bayesian shrinkage regression
(Caster et al, 2010) but all of the more widely used methods compute measures of
“disproportionality” for specific drug-condition pairs (Bate and Evans, 2009). That is, the
methods quantify the extent to which a given condition is “disproportionally” reported with a
given drug.

Newer data sources have emerged that overcome some of the SRS limitations but present
methodological and logistical challenges of their own. Longitudinal observational databases
(LODs) provide time-stamped patient-level medical information. Typical examples include
medical claims databases and electronic health record systems. The scale of some of these
databases presents interesting computational challenges — the larger claims databases contain
upwards of 50 million lives with more than 1 billion of clinical observations (prescription
dispensings, diagnoses, procedures, laboratory tests) over up to 10 years per life. A nascent



literature on signal detection in LODs exists. Several papers have looked at vaccine safety in
this context — see, for example, Lieu et al. (2007), McClure et al. (2008), and Walker (2010).
Papers focusing on drug safety include Curtis et al. (2008), Jin et al. (2008), Kulldorff et al.
(2008), Li (2009), Norén et al. (2008), and Schneeweiss et al. (2009).

In this paper we explore the application of disproportionality methods to the LOD context.
The motivation for our work derives from several quarters. First, disproportionality methods
have become familiar to drug safety scientists and, insofar as such methods can be applied to
LODs, the learning curve should be modest. Second, many of the standard disproportionality
methods have the potential to scale well to very large databases. Third, the simplicity of many
of the disproportionality methods leads to transparent outputs. Finally, issues related to
multiplicity and shrinkage estimation for disproportionality have attracted considerable
attention and mature solutions are now available.

2. Prior work

There has been some previous work on the implementation of measures of disproportionality
in the context of LODs. Jin et al. (2008) looked at the incidence of an adverse event in a fixed
6 month hazard period subsequent to the prescription of a given drug in linked
pharmaceutical, hospital and medical service data from Australia. Norén et al. (2008) have
chosen to adapt the Information Component (IC) measure of disproportionality to account
for the occurrence, or not, of disease prior to drug prescription as done in a self- controlled
case series analysis. Norén et al. ( 2008) refer to this measure as an IC delta and also present a
lower 95% confidence limit of the IC delta. In subsequent work (Norén et al., 2010) they
showed results from for a specific drug-wide screen that an IC calculated from data solely after
drug exposure only highlighted quantitatively one known reaction in a top 10 listing, as
opposed to the seven that the IC delta achieved. All results from this research group were
based on the analysis of the UK IMS Disease Analyser data set.

Curtis et al. (2008) proposed how one of the measures of disproportionality, the Multi-item
Gamma Poisson Shrinker (MGPS) might be used to screen the Medicare claims database.
They only looked at a single data set and one specific established drug-AE combination that
they showed they were able to highlight this established issue.

Hocine et al. (2009) combine the self-controlled case series approach with a sequential
probability ratio test (SPRT) to allow for prospective repeated analysis of evolving collections
of electronic patient records. As for the SPRT the authors focus on searching for predefined
types of pattern rather than truly open-ended hypothesis generation.

A related approach to measures of disproportionality, is the use of a SPRT to screen
healthcare data sets. Davis et al. (2005) retrospectively examined 5 years of data from 4 HMO
networks to compare the rates of a small number of selected examples including
intussusception after rotavirus vaccination and showed that these new vaccine effects could be
highlighted early using the SPRT on this data set. The SPRT approach has subsequently been
used to look at drugs and vaccines throughout the HMO Research Network (Brown, et al.,
2007, Lieu, et al., 2007, and Brown et al., 2009).



3. Disproportionality Methods and Spontaneous Reports

Disproportionality analysis methods for drug safety surveillance represent the primary class of
analytic methods for analyzing data from SRSs. SRSs receive reports that comprise of one or
more drugs, one or more adverse events (AEs), and possibly some basic demographic
information (in addition to narrative and text data). These reports are compiled into a
computerized database, which can be used to standardize the identification of the co-
occurrence of drugs and adverse events within each report. Table 1 below shows a conceptual
representation of a typical SRS entry.

Table 1: A conceptual representation of a typical entry in an SRS database

Age | Sex Drug 1 Drug2 ... Draug AE AE .. AE
15000 1 2 16000
42 Male No Yes ... No Yes No ... Yes

Disproportionality analysis methods include the multi-item gamma-Poisson shrinker, MGPS,
(DuMouchel, 1999, DuMouchel and Pregibon, 2001, Fram et al., 2003), proportional reporting
ratios, PRR, (Evans et al.,, 2001), reporting odds ratios, ROR, (Rothman et al., 2004), and
Bayesian confidence propagation neural network, BCPNN, (Bate et al., 1998, Norén et al.,
20006). The methods search SRS databases for “interesting” associations and focus on low-
dimensional projections of the data, specifically 2-dimensional contingency tables. Table 2
shows a typical table.

Table 2: A fictitious 2-dimensional projection of an SRS database
AEj= AEj = Total
Yes No
Drug 7/ = Yes wy,=20 w,, =100 120
Drugi=No | »,=100 w,;; =980 1080
Total 120 1080 1200

The basic task of a disproportionality method then is to rank order the tables in order of
“interestingness.” Different disproportionality methods focus on different statistical measures
of association as their measure of “interestingness”. MGPS focuses on the “reporting ratio”
(RR). The observed RR for the drug 7 — adverse event / combination (RR)) is the number of
occurrences of the combination (20 in the example above) divided by the expected number of
occurrences. MGPS computes the expected value under a model of independence. Specifically,
in the example above, overall, AE ; occurs in 10% of the reports (120/1200). Thus, if drug 7
and adverse event ; are statistically independent, 10% of the reports containing drug 7 should



include AE /, that is 12 reports in this case. Thus the observed RR for this example is 20/12 or
1 2/3; this combination occurred about 67% more often than expected.

Natural (though not necessarily unbiased) estimates of various probabilities emerge from
tables like Table 2. For example, one might estimate the conditional probability of AE / given
drug 7 by wy,/ wyt wy, (e. 20/120 in the example above). That is, the observed fraction of
drug 7 reports that listed AE ;. Table 3 below lists the formulae for the various measures of
«—dr ug -

association in common use, along with their probabilistic interpretation. Here for
example denotes the reports that did not list the target drug. PRR is the “Proportional
Reporting Ratio”, ROR is the “Reporting Odds Ratio,” and IC is the “Information
Component” used by BCPNN (Bate et al., 1998, Norén et al., 2000).

Table 3: Common measures of association for 2 X 2 tables in SRS analyses

Measure of Formula Probabilistic Interpretation
Association
RR W X (Woo + Wy, + W0 +W,,) Pr(ae | drug)
(Reporting (Woo + W) X (Weo +Wp,) Pr(ae)
Ratio)
PRR Woo ! Woo +Wo,) Pr(ae | drug)
(Proportional |y, "7y 4y ) Pr(ae |—drug)
Reporting
Ratio)
ROR Woo / Wio Pr(ae | drug)/Pr(—ae | drug)
(Reporting W, W Pr(ae |-drug) /Pr(—ae | dru
Odds Ratio) o1/ Wi (ae |1—drug) /Pr(— g)
IC Woo X (Woo + Wy, + Wy +W),) Pr(aeldrug)

formati 10g2 lo S
(Information (Woy + Wyg) X (Woy +W,,) Pr(ae)
Component)

All four of these measures make sense — in each case, a particular drug that is more likely to
cause a particular AE than some other drug will typically receive a higher score. Similarly, if an
AE and a drug are stochastically independent, all measures will return a null value. However,
all four are subject to sampling variability, i.e. a different set of AE reports from the same
“population” will not give exactly the same value of the measure of association. This may be
particularly the case with large sparse databases. Due to the Law of Large Numbers, this
statistical variability diminishes as the sample size increases. In the SRS context, however, the
count in the “w,,” cell is often small, leading to substantial variability (and hence uncertainty
about the true value of the measure of association) despite the often large numbers of reports
overall.



PRR and ROR do not address the variability issue whereas MGPS and BCPNN adopt a
Bayesian approach to address the issue. MGPS places a prior distribution on RRs that
encapsulates a prior belief that most RRs are close to the average value of all RR’s (i.e., close to
1) whereas the BCPNN assumes a prior distribution centered around an RR of 1, based on
empirical testing. Only in the face of substantial evidence from the data does BCPNN or
MGPS return an RR estimate that is substantially larger than one. Thus, for example, an RR of
1,000 that derives from an observed count of w,=1 might result in a MGPS RR estimate
(Empirical Bayesian Geometric Mean or EBGM) of 1.5 (i.e. the crude RR is shrunk towards a
value of 1) whereas an RR of 1,000 that derives from an observed count of ,,=100 might
result in a EBGM RR estimate of close to 1,000. For the specific Bayesian setup that MGPS
uses, observed counts in excess of 10 result in RR estimates that typically receive essentially no
shrinkage, although in practice larger differentials have been observed depending on the
thresholds used (Hauben and Zhou, 2003, Hauben et al., 2004, Hauben and Zhou, 2004).
Similar properties have been observed with the BCPNN (van Puijenbroek, et. al., 2002, Bate
and Evans 2009.) We note that small cell counts may be less frequent in LODs than SRS.

The EBGM and IC scores are means of the posterior distribution of the true RR. Other
summaries are possible. For example, DuMouchel mentions EB05 (DuMouchel, 1999). This
is the 5™ percentile of the posterior distribution — meaning that there is a 95% probability that
the “true” RR exceeds the EB05. Since EBO5 is always smaller than EBGM this, in a sense,
adds extra shrinkage and represents a more conservative choice than EBGM.

We note some analysts use the standard chi-square statistic for 2X2 tables, especially in
combination with the PRR score. We include a “signed” chi square statistic in our analyses
below.

4. Applying Disproportionality Analysis to Longitudinal Data

In the context of spontaneous report systems, some authors use the term “signal of
disproportionate  reporting” (SDR) when discussing associations highlighted by
disproportionality methods (Hauben et al., 2005, Hauben and Reich, 2005). Hauben and Reich
introduced the term to distinguish metric scores in SRS data from  signals of  suspected
causality that have undergone clinical review. As in reality, most SDRs that emerge from
spontaneous report databases represent noise because the reports are associated with
treatment indications (i.e., confounding by indication), co-prescribing patterns, co-morbid
illnesses, protopathic bias, channeling bias, or other reporting artifacts, or, the reported
adverse events are already labeled or are medically trivial. In this sense, SDRs represent
generated hypotheses about potential drug safety issues that warrant further investigation.
Furthermore, spontaneous report databases present a number of well-documented limitations
such as under-reporting, over-reporting, and duplicate-reporting, they fail to provide a
denominator — how many individuals are actually consuming drug, and generally have limited
temporal information with regard to duration of exposure and the time order of exposure and
condition (Hauben et al, 2005). The richer context of longitudinal data (such as claims
databases or electronic health records) affords the possibility of more refined analysis to
address some of these artifacts. Nonetheless, given the wide acceptance of disproportionality



methods in pharmacovigilance, application of these approaches to longitudinal data may prove
useful.

The key step in the application of disproportionality methods to any data is the mapping of the
data into drug-condition two-by-two tables. With longitudinal data many choices present
themselves. In this paper we consider three particular approaches, “distinct patients,” “SRS,”
and “modified SRS.”

In what follows we will illustrate the approaches using the example of Figure 1. Figure 1 shows
three patients. Patient 1 consumed drug A during two separate drug eras, or spans of
persistent exposure to a particular medical product. The patient experienced condition X three
times during these eras, twice during the first era and once during the second. Patient 2 also
had three drug eras but with three separate drugs, A, B, and C. Finally Patient 3 had two
overlapping drug eras, one with drug B and one with drug C. The patient experienced
condition O while taking both B and C, and conditions O and X after the drug eras.

Note we treat conditions as if they occur at distinct moments in time. In fact the data may
contain condition “eras”, or episode of care for a particular disease, and what we are utilizing
is the timestamp of the beginning of the era. Drug eras, on the other hand, play an important
role in our approach. A drug era represents a continuous period of drug usage, which can be
augmented during analysis with an additional period post-exposure to capture outcomes that
may still be drug-related. We refer to the optional post-exposure period as a surveillance
window.

We now consider three different approaches to constructing the two-by-two table for drug A
and condition X. Appendix B provide a formal mathematical description.

Patient 1  A—X%; A A X5 A
Patient 2 X, A A B Xz B
Patient 3 B—e; B0, X
time >

Figure 1. A longitudinal dataset with three patients, three distinct drugs (A, B, and C)
and two distinct conditions (X and O).

4.1 Distinct Patients

In the “distinct patients” approach to table construction, wy,+wy,+w,,+», (denoted w,,) equals
the total number of patients in the database. », is the number of patients that had a drug A
era and experienced condition X during a drug A era. », is the number of patients that had a
drug A era and did not experience condition X during a drug A era. w,, is the number of
patients that did not have a drug A era but experienced condition X. »y; is the number of
patients that did not have a drug A era and never experienced condition X. Thus, for the
example of Figure 1, »,,=1 (patient 1), w,,=1 (patient 2), »,,=1 (patient 3), and »,;=0. Note
that w, . =3.

4.2 SRS



The second approach attempts to mimic what SRS reports the longitudinal data would
generate, in that the observed co-occurrence of a drug and outcome is treated as if it were
reported as a spontaneous case. %, is the number of distinct X conditions the occur during
drug A eras. w,, is the number of distinct non-X conditions that occur during drug A eras. wy,
is the number of distinct X conditions that occur during non-A drug eras. »;, is the number of
distinct non-X conditions that occur during non-A drug eras. Thus, for the example of Figure
1, wp0=3 (A+X,, A+X,, A+X5), 2, =0, w,=1 (B+X;), and w;, =2 (B+0O,,C+O,).

4.3 Modified-SRS

A third approach augments the SRS-like reports with additional denominator-based
information about exposures without outcomes and outcomes that occurred without prior
exposure. This approach attempts to patch obvious weaknesses of the SRS approach by
taking advantage of the other information available in the LODs. Specifically, whereas the SRS
systems do not contain the total number of drug exposures, only those exposures that were
co-reported with an adverse event, LODs offer the potential to measure the number of event-
free exposures. Similarly, the background rate of events is not well captured in SRS, since only
drug-related events are recorded, whereas LOD can provide information about conditions that
occur independently from drug exposures. The modified SRS approach counts “non-event”
drug eras and “non-drug” conditions that can be combined with all drug-related events prior
to calculating the disproportionality measures. In this approach, as with SRS, ,, is the number
of distinct X conditions that occur during drug A eras. »,, however, is the number of distinct
non-X conditions that occur during drug A eras plus the number of A eras in which no events
occut. wy, is the number of distinct X conditions that occur outside drug A eras. »; is the
number of distinct non-X conditions that occur during non-A drug eras plus the number of
non-A drug eras with no conditions plus the number of non-X conditions with no drug era.
Thus, for the example of Figure 1, »,,=3 (A+X,, A+X,, A+X,), w,=1 (patient 2’s A era),
w,=3 (X,, B+X,, X,), and w;,=4 (patient 2’s C era, B+0O,,C+O, O,).

Our application of disproportionality methods to longitudinal data also makes a distinction
between incident and prevalent conditions. The incident case only considers the first
occurrence of each event, whereas the prevalent case (considered in the above example)
considers all occurrences. Thus, for the example above, the incident analysis would proceed as
above but only consider the first event of each type. Figure 2 illustrates the modified dataset
used in an incident analysis. Note that our use of the term “incident” does not necessarily
coincide with standard use of this term in epidemiological practice. In particular, we do not
require an event-free “clean” period prior to first condition occurrence.

Patient 1 A—X A A A
Patient 2 X, A A B B
Patient 3 B—o; B X
time >

Figure 2. A longitudinal dataset with three patients, three distinct drugs (A, B, and C)
and two distinct conditions (X and O). Incident conditions only.



Three mapping approaches, distinct patients, SRS, and modified SRS, together with two
condition types, prevalent and incident, produce six mapping scenarios: distinct patients -
prevalent, distinct patients - incident, SRS - prevalent, SRS - incident, modified SRS -prevalent,
and modified SRS - incident.

In this study we use 9 disproportionality measures: PRR, PRRO5 (left bound of the 90%
confidence interval for PRR), ROR, RORO05 (left bound of the 90% confidence interval for
ROR), IC, ICO5 (lower credibility limit for 90% credibility interval for IC), EBGM, EB05, and
signed Chi-square. See Appendix A for additional details.

5. Data and Evaluation Procedure
5.1 Real Data

In the numerical experiments reported below, we use de-identified Thomson Reuters
MarketScan Lab database (MSLR). MSLR contains 1.5 million persons representing a largely
privately-insured population, with administrative claims from inpatient, outpatient, and
pharmacy services supplemented by laboratory results. We also successfully executed all
mentioned above LOD mapping approaches and calculated disproportionality metrics on
several other de-identified Thomson Reuters databases: Medicaid Multi-State database
(MDCD), Medicare Supplemental and Coordination of Benefits database (MDCR), and
Commercial Claims and Encounters database (CCAE). These three databases contain medical
records of 5 million, 11 million, and 59 million persons respectively.

5.2 Simulated Data

For performance evaluation purposes, we used a simulated database (OSIM). OSIM is
modeled after real observational databases. It contains information on 10 million simulated
persons, 5000 simulated drugs, and 4000 simulated conditions. Database date range is 10 years.
Because of simulated nature of the data, the list of true drug-condition associations is available,
enabling quantitative comparison of the different measures of disproportionality.

5.3 Mean Average Precision

To compare the performance of different disproportionality methods, we use “mean average
precision” (MAP), a scoring method widely used in text retrieval. Higher values of a MAP
score indicate better performance. Let y, =1 if the 4th drug causes the ¢th condition and 0
otherwise, 4=1,....D, ~=1...,C. Let M = z ¥, denote the number of causal combinations and

d,c

N =DXC the total number of combinations. Note it is generally the case that M << N . Let
z, denote the score (EBGM, IC, PRR, etc.) for the #th drug and the ¢th condition. For a

iven set of predicted values Z =(z,,,--+,z, ), we define “precision-at-K”’ denoted PY)(Z)as
g p 112 Y “dc p

the fraction of causal combinations amongst the K largest predicted values in Z (Madigan et
al., 2006). Specifically, let z,, >---> z,, denote the ordered values of Z. Then:
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P (Z)_E;y(i)’

where Y, is the causal status of the combination corresponding to Z;y. The mean average

precision or MAP score, S, is then:

If there are ties in Z, the results are ordered such that negative drug-condition combinations,
i.e. combinations such that y, =0, go first. The precision of tied positive combinations, i.e.

combinations such that y, =1, is calculated as if they were all encountered at the same time,
ie. if Zy) = Zy,p, then PY(Z)=PED(Z).

Table 4 contains hypothetical drug-condition pairs and their scores. Suppose that there are 3
drugs, D1, D2, and D3, and 3 conditions, C1, C2, and C3. But only 5 pairs, D1-C1, D1-C2,
D2-C1, D2-C2 and D3-tC3 are causal combinations and the remaining pairs are not. Table 5
illustrates the scoring process.

Table 4. Sample data: 3 drugs, 3 conditions; y; =1 if drug-condition combination is positive, y;

=0 otherwise.
Drug | Condition | Score (3) | Truth (y)
C1 5 1
D1 C2 0 1
C3 9 0
C1 8 1
D2 C2 5 1
C3 0 0
C1 0 0
D3 C2 0 0
C3 5 1
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Table 5. Hlustration of the MAP methodology.

Sorted
Values
Drug | Condition| z | y | P®
D1 C3 9 1 1/1=1
D2 C1 8 1 2/2=1
D3 C3 5 0
D1 C1 5 1 3/4=0.75
D2 C2 5 1 4/5=0.8
D2 C3 0 0
D3 C1 0 0
D3 C2 0 0
D1 C1 0 1 5/9=0.55
MAP = (1 +1+0.75 +0.8 +0.55) / 5 = 0.82

In some cases, not every possible drug-condition combination may be assigned a score. Pairs
without a valid score are treated as if they were given the lowest possible score value. In table 5
these pairs would be placed after all scores that were actually observed.

6. Results
6.1 Application to simulated data

Disproportionality analysis methods were computationally efficient, executing against the
simulated dataset with 10 million persons for 4000 drugs and 5000 conditions and 4.9 x 10°
drug-condition co-occurrences. All analyses were able to complete in less than 24 hours,
running in a single 64-bit computer with 2.67 GHz I-7 CPU and 12 GB of RAM.

Figure 3 shows scatterplots of the various disproportionality measures (on the logarithmic
scale) for a random sample of 1000 drug-condition pairs for the SRS-prevalent scenario.

PRR and ROR scores are very similar, as it is almost always the case with the LOD data that
Wy, is much smaller than w,, and the same is true for »,, and w,,. Due to the same rationale,
PRRO5 and RORO5 scores are extremely close as well. IC and EBGM, both being shrinkage
estimators, show quite similar behavior, as do IC05 and EBO5. Scatterplots of PRR versus
EBGM (PRR vs. IC, PRR vs. IC05, ROR vs. EBGM, PRR vs. EBO5, etc.) shows greater
variability because PRR gives similar to EBGM results when cell counts, 1, are large but PRR
is less stable for small counts (Madigan, 1999). Signed Chi-square scores are qualitatively
different from other measures of disproportionality. We observed similar relationships in the
other five analysis scenarios: distinct patients-incident, distinct patients — prevalent, SRS-
incident, modified SRS-prevalent, and modified SRS-incident.
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Figure 3. Prevalent events -SRS (simulated data). Scatterplots (on the logarithmic
scale) of nine measures of disproportionality for the SRS — prevalent scenario on the
simulated data.

Figure 4 illustrates the EBGM scores across the six different table construction scenarios. It is
interesting to note that for the same counting approach, distinct patients, SRS, or modified
SRS, scores are often similar across different event types, prevalent or incident. Distinct
patient counting approach shows similar scores for both prevalent and incident event types.
SRS counting approach shows the same. It is also worth noting that SRS -prevalent scores are
similar to both SRS - incident and modified SRS - incident scores.
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6.2 Performance on simulated data
Figure 5 presents MAP scores for all six approaches to table construction (distinct patients,
SRS, and modified SRS for both prevalent events and incident events) and nine different
scoring approaches (PRR, ROR, IC, EBGM, signed Chi-square, PRR05, RORO05, IC05, and
EBO5).
Figure 5 shows that
- Both the SRS and modified SRS counting approaches provide similar performance for
both incident and prevalent cases;
- the distinct patients approach to table construction provides inferior performance to
the other two counting approaches, SRS and modified SRS;



- the Bayesian approaches to scoring, IC and EBGM, provide the highest levels of

performance, with signed Chi-square, IC05 and EBO5 not far behind.
- FPor all three counting approaches, distinct patients, SRS, and modified SRS, ROR and

PRR provide the lowest MAP scores.
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Figure 5. MAP Scores for DP Methods (simulated data). Scores for all six approaches
to table construction and nine different scoring approaches.

6.3 Application to the Real Data

Whereas spontaneous reporting databases contain several million records, LODs can contain
more than one order of magnitude in data size, so computational feasibility remains central to

efficient analysis. In this study, all disproportionality analysis configurations were executed
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against all drugs and all conditions across the 5 databases. In the largest database, CCAE,
there were over 4.4 billion drug-condition co-occurrences identified over 1451 drugs and
11844 conditions. All analyses were able to complete in less than 24 hours.
Figure 6 shows various scores (on the logarithmic scale) for a random sample of 1000 drug-
condition pairs for the SRS-prevalent scenario on the MSLR data. Key findings are similar to
what we observed on the simulated data:
- PRR and ROR are very close to each other, as are PRR0O5 and RORO05;
- Bayesian shrinkage approaches, IC and EBGM, IC05 and EB05, show agreement on
most of the drug/condition pairs;
- Scatterplots of PRR vs. EBGM (and other similar metrics) have several branches
because amount of shrinkage depends on observed cell count;
signed chi-square scores behave differently from other measures of disproportionality.
S1rn1lar findings apply to the SRS-incident, modified SRS-prevalent, modified SRS-incident,
and distinct patient prevalent and incident scenarios.
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Figure 6. Prevalent events - SRS (MSLR). Scatterplots (on the logarithmic scale) of
nine measures of disproportionality for the SRS — prevalent scenario on MSLR.

Figure 7 shows EBGM scores on MSLR data across all six table construction scenarios. As on
the simulated data, EBGM scores on MSLR show good agreement for both event types,
prevalent and incident. Distinct patient prevalent and incident scores are quite similar, as well
as SRS-prevalent and SRS-incident, modified SRS - prevalent and modified SRS- incident.
Within each event type, prevalent and incident, SRS and modified SRS scores are close.
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Figure 7. EBGM scores across six scenarios (MSLR data). Scatterplots of EBGM
scores across six scenarios: distinct patients - prevalent, SRS - prevalent, modified SRS
- prevalent, distinct patient - incident, SRS - incident, modified SRS - incident.
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7. Conclusions

There is a significant interest in utilization of observational health care data in drug safety
research. Statistical methods based on different measures of disproportionality were among the
first employed in pharmacovigilance (Finney, 1971). Therefore it seems natural to extend
these methods to the analysis of longitudinal data. This article is the first systematic attempt of
such an extension.

We propose three counting approaches, distinct patients, SRS, and modified SRS, which in
conjunction with two event types, prevalent or incident, lead to six different mappings of
LOD into the form appropriate for disproportionality analysis.

In the numerical experiment, we considered nine measures of disproportionality. Among those
nine, shrinkage approaches, IC and EBGM, showed the best performance on the simulated
data with respect to MAP, closely followed by the derivative shrinkage measures, EBO5 and
IC05, and signed Chi-square test. No metric performed perfectly suggesting that further
analysis of outputs of any dispropiortionality metric would be needed to prevent false positive
and false negative results. Qualitative comparison of the results from the simulated dataset and
MSLR data suggests that the same set of disproportionality measures and similar mapping
approaches, SRS and modified SRS, may achieve the best performance on real data. Further
research will help to test these hypotheses.

While spontaneous adverse drug reaction databases may contain up to several million reports,
disproportionality analysis of observational health databases involves much larger amount of
data because each person may contribute numerous reports over time. Nevertheless we are
able to complete all calculations for disproportionality analysis even on a database that
contains information on almost sixty million people. The feasibility of such large scale
screening of LOD is promising. This opens new possibilities in pharmacovigilance research
and, eventually, will contribute to improved drug safety. The results presented here will also
serve as a benchmark for comparison when in the future other statistical methods are applied
to the same data sets. Software for all of the methods described in this paper is freely available
at http://omop.fnih.org.
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APPENDIX A. Formulae for measures of disproportionality

Let us assume that for each stratum i we calculated 2-dimesional summary that is shown in
table 6. Let N, be the sum of all cell counts, N, =W, +W,,, +W,,+W,,.
Table 6. Counts for the /th stratum.
AE Yes  AE No
Drug Yes Wi Wi

Drug No Wi Wi

Using these counts we can define stratified measures of disproportionality.

PRR, proportional reporting ratio:
PRR = Z[VKOO*(VKm"’Wm)/Ni

zimlo*(Wioo*Wim)/N, )

PRRO5, left bound of the 90% confidence interval for PRR:

PRROS = PRR- P~ 1.645- ( zino(W[m‘*Wm)/N; zimm(moo"'Wno)/Nf

1/2
Zi((”Vmo*Wim)(Wim”’Vn D00+ Wi10)~Wino Wiso*N; ) N} )

ROR, reporting odds ratio:

> WiaWinr/ N;
> Fadior/N; ©

ROR =
RORO5, left bound of the 90% confidence interval for ROR:
ROR05=ROR-exp(~1.645-0),

2 2 2

2 zi(Wioo"'Will)WiooWin/Ni Ei(VViIO'H/ViII)VViOIVViIO"'(VViOI'FWIO)W/iOOVKI1/Ni Zi(VViOI"'VVxIO)VViOIVViIO/Ni
= 2 + 2
2(E,I.I’Vioon /N;) zziWioon/Ni ziVViOIVViIO/Nx Z(ZiVViOIVVHO /N;)

o

IC, Information component:

N Wi +1/2
IC= logz[2_<W,-oo+wfml§_m+wim)+1/2 ]
i Ni

ICO5, lower credibility limit for 90% credibility interval for IC:

V4
n+l/2
1C05=1og,(z), zis the solution to equation %ﬂfﬁl/z*le%"ﬂ/zﬂdﬂ =0.05,
0

where e:( foot 101])\5 ATV n= ZiVV[OO'

For more details regarding IC and ICO5 see (Norén et al. 2008, Bate et al. 1998).

Signed Shi-square:
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sgnChiSquare = Sign(Zi W= Zi(VViOO W)Wy + W;m)/N_\ (3 ra0=3 Praw o o)/,

! /2,[(”',oo+”/,0|)(w,10+w.11)(”’100*”/,10)(”/,0\+W;| DANE(NA1))

Details regarding EBGM, geometric mean of the empirical Bayes estimate of the postetior
distribution of the reporting ratio, and EBO5, its 5th percentile, can be found in reference
(DuMouchel, 1999, DuMouchel and Pregibon, 2001).

APPENDIX B. Mapping approaches for longitudinal data

This appendix provides a formal mathematical definition of the alternative methods of
constructing two-by-two tables from longitudinal data for disproportionality analysis.

Notation
Let y,, =1 if patient 7 has condition ¢ at time 4 and y,, =0 otherwise, /=1,...,I, =1,...C, and
r=1,...,T. Let x,, =1 if patient / “takes” drug 4 at time # andx,, =0 otherwise, /=1,...,I,

d=1,...D, and 7=1,...,T. This may include the user-defined off-drug “surveillance” window.
Let y, =1ify,, =1andy, =0 forall s<t, 0 otherwise. Let z, =1 if patient 7 has coverage
at time #, 0 otherwise.

Let D,, be the set of all ordered pairs (r9), r,s € {1,..., T}, where x,, =1 and (=1 or Xiger1)

=0), x,4,=1and (=T or x;y,,,=0),and y,, =0 forall cand all € [r,....s], and z, =1 forall #

€[r,...,s]. This defines condition-free periods of continuous drug exposure.

Define I(x) = 1 if x>0, 0 otherwise.

Prevalent Conditions, Distinct Patients

Woy = Zl(zxidtyict)
Wy = Z{I(z Zil-xidt)_l(zxidtyict)}

i

Wi = 2{(1_ I(Z ZyXig)) X I(Zzityict)}

i

WH:Z{(l—I(Zzhxid,)) X (1—I(Zzity,-a))}

i

Prevalent Conditions, SRS



Woo = szidtyicz
i1
Wor = 22 zxidzyic't

i t c'#c

Wio = 22 Z‘xid’ryict
i t d’'#d

Wy = 22 szid'tyic't
it d'#dc’#c

Prevalent Conditions, Modified-SRS

Woo = zzxidryicz
T

oy = z{z S oy 41D, |}
t c’#c

i

Wi = 2{2{ ind’tyicz t ViaZi (1 - ](zxfd’ ))}}

i t d'#d d

Wi = 2{2 2 Exid'tyic't + 2|Did'| + 2 Zzityict(l - [(Z xidt))}
d'#d t c’#c d

i t d'#dc’#c

For incident conditions replace y,, in the above definitions by y; .
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