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1. Introduction 
 
Increasing scientific, regulatory and public scrutiny focuses on the obligation of the medical 
community, pharmaceutical industry and health authorities to ensure that marketed drugs have 
acceptable benefit-risk profiles. This is an intricate and ongoing process that begins with 
careful pre-approval studies but continues after regulatory market authorization when the drug 
is in widespread clinical use. In the latter environment, surveillance schemes based on 
spontaneous reporting system (SRS) databases represent a cornerstone for the early detection 
of drug hazards that are novel by virtue of their clinical nature, severity and/or frequency. SRS 
databases collect voluntary reports of adverse events made directly to the regulator or to the 
manufacturer of the product. Such spontaneous report databases present a number of well-
documented limitations such as under-reporting, over-reporting, and duplicate reporting. 
Furthermore, SRS databases fail to provide a denominator – the number of individuals that are 
actually consuming a drug – and generally have limited temporal information with regard to 
duration of exposure and the time order of exposure and condition (Hauben et al., 2005).  
 
Despite the limitations inherent in SRS-based pharmacovigilance, analytic methods for 
spontaneous report databases have attracted considerable attention in the last decade, and 
several different methods have become well established, both in commercial software products 
and in the medical literature. A number of methods have been applied to the analysis of 
spontaneous reports (e.g., Praus et al., 1993, vanPuijenbroek et al., 2000 Orre et al., 2005, and 
Mammadov et al., 2007) including some recent work focused on Bayesian shrinkage regression 
(Caster et al., 2010) but all of the more widely used methods compute measures of 
“disproportionality” for specific drug-condition pairs (Bate and Evans, 2009). That is, the 
methods quantify the extent to which a given condition is “disproportionally” reported with a 
given drug. 
 
Newer data sources have emerged that overcome some of the SRS limitations but present 
methodological and logistical challenges of their own. Longitudinal observational databases 
(LODs) provide time-stamped patient-level medical information. Typical examples include 
medical claims databases and electronic health record systems.  The scale of some of these 
databases presents interesting computational challenges – the larger claims databases contain 
upwards of 50 million lives with more than 1 billion of clinical observations (prescription 
dispensings, diagnoses, procedures, laboratory tests) over up to 10 years per life. A nascent 
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literature on signal detection in LODs exists. Several papers have looked at vaccine safety in 
this context – see, for example, Lieu et al. (2007), McClure et al. (2008), and Walker (2010). 
Papers focusing on drug safety include Curtis et al. (2008), Jin et al. (2008), Kulldorff et al. 
(2008), Li (2009), Norén et al. (2008), and Schneeweiss et al. (2009).  
 
In this paper we explore the application of disproportionality methods to the LOD context. 
The motivation for our work derives from several quarters. First, disproportionality methods 
have become familiar to drug safety scientists and, insofar as such methods can be applied to 
LODs, the learning curve should be modest. Second, many of the standard disproportionality 
methods have the potential to scale well to very large databases. Third, the simplicity of many 
of the disproportionality methods leads to transparent outputs. Finally, issues related to 
multiplicity and shrinkage estimation for disproportionality have attracted considerable 
attention and mature solutions are now available. 
 
 
2. Prior work 
 
There has been some previous work on the implementation of measures of disproportionality 
in the context of LODs. Jin et al. (2008) looked at the incidence of an adverse event in a fixed 
6 month hazard period subsequent to the prescription of a given drug in linked 
pharmaceutical, hospital and medical service data from Australia. Norén et al. (2008) have 
chosen to adapt the Information Component (IC) measure of disproportionality to account 
for the occurrence, or not, of disease prior to drug prescription as done in a self- controlled 
case series analysis. Norén et al. ( 2008) refer to this measure as an IC delta and also present a 
lower 95% confidence limit of the IC delta. In subsequent work (Norén et al., 2010) they 
showed results from for a specific drug-wide screen that an IC calculated from data solely after 
drug exposure only highlighted quantitatively one known reaction in a top 10 listing, as 
opposed to the seven that the IC delta achieved. All results from this research group were 
based on the analysis of the UK IMS Disease Analyser data set. 
 
Curtis et al. (2008) proposed how one of the measures of disproportionality, the Multi-item 
Gamma Poisson Shrinker (MGPS) might be used to screen the Medicare claims database. 
They only looked at a single data set and one specific established drug-AE combination that 
they showed they were able to highlight this established issue. 
 
Hocine et al. (2009) combine the self-controlled case series approach with a sequential 
probability ratio test (SPRT) to allow for prospective repeated analysis of evolving collections 
of electronic patient records. As for the SPRT the authors focus on searching for predefined 
types of pattern rather than truly open-ended hypothesis generation. 
 
A related approach to measures of disproportionality, is the use of a SPRT to screen 
healthcare data sets. Davis et al. (2005) retrospectively examined 5 years of data from 4 HMO 
networks to compare the rates of a small number of selected examples including 
intussusception after rotavirus vaccination and showed that these new vaccine effects could be 
highlighted early using the SPRT on this data set. The SPRT approach has subsequently been 
used to look at drugs and vaccines throughout the HMO Research Network (Brown, et al., 
2007, Lieu, et al., 2007, and Brown et al., 2009). 
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3. Disproportionality Methods and Spontaneous Reports 
 

Disproportionality analysis methods for drug safety surveillance represent the primary class of 
analytic methods for analyzing data from SRSs. SRSs receive reports that comprise of one or 
more drugs, one or more adverse events (AEs), and possibly some basic demographic 
information (in addition to narrative and text data). These reports are compiled into a 
computerized database, which can be used to standardize the identification of the co-
occurrence of drugs and adverse events within each report.  Table 1 below shows a conceptual 
representation of a typical SRS entry. 
 
 
Table 1: A conceptual representation of a typical entry in an SRS database 
Age Sex Drug 1 Drug 2 … Drug 

15000 
AE        
1 

AE      
2 

… AE 
16000 

42 Male No Yes … No Yes No … Yes 
 
 
Disproportionality analysis methods include the multi-item gamma-Poisson shrinker, MGPS, 
(DuMouchel, 1999, DuMouchel and Pregibon, 2001, Fram et al., 2003), proportional reporting 
ratios, PRR, (Evans et al., 2001), reporting odds ratios, ROR, (Rothman et al., 2004), and 
Bayesian confidence propagation neural network, BCPNN, (Bate et al., 1998, Norén et al., 
2006). The methods search SRS databases for “interesting” associations and focus on low-
dimensional projections of the data, specifically 2-dimensional contingency tables. Table 2 
shows a typical table.   
 
 

Table 2: A fictitious 2-dimensional projection of an SRS database 
 AE j = 

Yes 
AE j = 

No 
Total 

Drug i  = Yes w00=20 w01=100 120 
Drug i  = No w10=100 w11=980 1080 

Total 120 1080 1200 
 

 
 
The basic task of a disproportionality method then is to rank order the tables in order of 
“interestingness.” Different disproportionality methods focus on different statistical measures 
of association as their measure of “interestingness”. MGPS focuses on the “reporting ratio” 
(RR). The observed RR for the drug i – adverse event j combination (RRij) is the number of 
occurrences of the combination (20 in the example above) divided by the expected number of 
occurrences. MGPS computes the expected value under a model of independence. Specifically, 
in the example above, overall, AE j occurs in 10% of the reports (120/1200). Thus, if drug i 
and adverse event j are statistically independent, 10% of the reports containing drug i should 
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include AE j, that is 12 reports in this case. Thus the observed RR for this example is 20/12 or 
1 2/3; this combination occurred about 67% more often than expected. 
 
Natural (though not necessarily unbiased) estimates of various probabilities emerge from 
tables like Table 2. For example, one might estimate the conditional probability of AE j given 
drug i by w00/ w00+ w01 (i.e. 20/120 in the example above). That is, the observed fraction of 
drug i reports that listed AE j. Table 3 below lists the formulae for the various measures of 
association in common use, along with their probabilistic interpretation. Here “ ” for 
example denotes the reports that did not list the target drug. PRR is the “Proportional 
Reporting Ratio”, ROR is the “Reporting Odds Ratio,” and IC is the “Information 
Component” used by BCPNN (Bate et al., 1998, Norén et al., 2006).  
 
 
Table 3: Common measures of association for 2 X 2 tables in SRS analyses 
 
Measure of 
Association 

Formula Probabilistic Interpretation 

RR 
(Reporting 
Ratio) 
 

w00 ! (w00 +w01 +w10 +w11)
(w00 +w10 )! (w00 +w01)

  
 

PRR 
(Proportional 
Reporting 
Ratio) 
 

w00 / (w00 +w01)
w10 / (w10 +w11)

  

                
 

ROR 
(Reporting 
Odds Ratio) 

   w00 /w10
w01 /w11

  

  
        

 

IC 
(Information 
Component) 

log2
w00 ! (w00 +w01 +w10 +w11)
(w00 +w10 )! (w00 +w01)

        

  
 

 
 
All four of these measures make sense – in each case, a particular drug that is more likely to 
cause a particular AE than some other drug will typically receive a higher score. Similarly, if an 
AE and a drug are stochastically independent, all measures will return a null value. However, 
all four are subject to sampling variability, i.e. a different set of AE reports from the same 
“population” will not give exactly the same value of the measure of association. This may be 
particularly the case with large sparse databases. Due to the Law of Large Numbers, this 
statistical variability diminishes as the sample size increases. In the SRS context, however, the 
count in the “w00” cell is often small, leading to substantial variability (and hence uncertainty 
about the true value of the measure of association) despite the often large numbers of reports 
overall. 
 

 

¬drug

 

Pr(ae | drug)
Pr(ae)

 

Pr(ae | drug)
Pr(ae |¬drug)

 

Pr(ae | drug) /Pr(¬ae | drug)
Pr(ae |¬drug) /Pr(¬ae | drug)

 

log2
Pr(ae | drug)
Pr(ae)
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PRR and ROR do not address the variability issue whereas MGPS and BCPNN adopt a 
Bayesian approach to address the issue. MGPS places a prior distribution on RRs that 
encapsulates a prior belief that most RRs are close to the average value of all RR’s (i.e., close to 
1) whereas the BCPNN assumes a prior distribution centered around an RR of 1, based on 
empirical testing. Only in the face of substantial evidence from the data does BCPNN or 
MGPS return an RR estimate that is substantially larger than one. Thus, for example, an RR of 
1,000 that derives from an observed count of w00=1 might result in a MGPS RR estimate 
(Empirical Bayesian Geometric Mean or EBGM) of 1.5 (i.e. the crude RR is shrunk towards a 
value of 1) whereas an RR of 1,000 that derives from an observed count of w00=100 might 
result in a EBGM RR estimate of close to 1,000. For the specific Bayesian setup that MGPS 
uses, observed counts in excess of 10 result in RR estimates that typically receive essentially no 
shrinkage, although in practice larger differentials have been observed depending on the 
thresholds used (Hauben and Zhou, 2003, Hauben et al., 2004, Hauben and Zhou, 2004). 
Similar properties have been observed with the BCPNN (van Puijenbroek, et. al., 2002, Bate 
and Evans 2009.) We note that small cell counts may be less frequent in LODs than SRS.  
 
The EBGM and IC scores are means of the posterior distribution of the true RR. Other 
summaries are possible. For example, DuMouchel mentions EB05 (DuMouchel, 1999).  This 
is the 5th percentile of the posterior distribution – meaning that there is a 95% probability that 
the “true” RR exceeds the EB05. Since EB05 is always smaller than EBGM this, in a sense, 
adds extra shrinkage and represents a more conservative choice than EBGM.   
 
We note some analysts use the standard chi-square statistic for 2X2 tables, especially in 
combination with the PRR score. We include a “signed” chi square statistic in our analyses 
below. 
  
 
4. Applying Disproportionality Analysis to Longitudinal Data 
 
In the context of spontaneous report systems, some authors use the term “signal of 
disproportionate reporting” (SDR) when discussing associations highlighted by 
disproportionality methods (Hauben et al., 2005, Hauben and Reich, 2005). Hauben and Reich 
introduced the term to distinguish metric scores in SRS data  from signals of suspected 
causality that have undergone clinical review. As in reality, most SDRs that emerge from 
spontaneous report databases represent noise because the reports are associated with 
treatment indications (i.e., confounding by indication), co-prescribing patterns, co-morbid 
illnesses, protopathic bias, channeling bias, or other reporting artifacts, or, the reported 
adverse events are already labeled or are medically trivial. In this sense, SDRs represent 
generated hypotheses about potential drug safety issues that warrant further investigation. 
Furthermore, spontaneous report databases present a number of well-documented limitations 
such as under-reporting, over-reporting, and duplicate-reporting, they fail to provide a 
denominator – how many individuals are actually consuming drug, and generally have limited 
temporal information with regard to duration of exposure and the time order of exposure and 
condition (Hauben et al., 2005). The richer context of longitudinal data (such as claims 
databases or electronic health records) affords the possibility of more refined analysis to 
address some of these artifacts. Nonetheless, given the wide acceptance of disproportionality 
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methods in pharmacovigilance, application of these approaches to longitudinal data may prove 
useful. 
   
The key step in the application of disproportionality methods to any data is the mapping of the 
data into drug-condition two-by-two tables. With longitudinal data many choices present 
themselves. In this paper we consider three particular approaches, “distinct patients,” “SRS,” 
and “modified SRS.” 
 
In what follows we will illustrate the approaches using the example of Figure 1. Figure 1 shows 
three patients. Patient 1 consumed drug A during two separate drug eras, or spans of 
persistent exposure to a particular medical product. The patient experienced condition X three 
times during these eras, twice during the first era and once during the second. Patient 2 also 
had three drug eras but with three separate drugs, A, B, and C. Finally Patient 3 had two 
overlapping drug eras, one with drug B and one with drug C. The patient experienced 
condition O while taking both B and C, and conditions O and X after the drug eras. 
 
Note we treat conditions as if they occur at distinct moments in time. In fact the data may 
contain condition “eras”, or episode of care for a particular disease, and what we are utilizing 
is the timestamp of the beginning of the era. Drug eras, on the other hand, play an important 
role in our approach. A drug era represents a continuous period of drug usage, which can be 
augmented during analysis with an additional period post-exposure to capture outcomes that 
may still be drug-related. We refer to the optional post-exposure period as a surveillance 
window. 
  
We now consider three different approaches to constructing the two-by-two table for drug A 
and condition X. Appendix B provide a formal mathematical description. 
  

 
Figure 1. A longitudinal dataset with three patients, three distinct drugs (A, B, and C) 
and two distinct conditions (X and O).  
 
4.1 Distinct Patients 
In the “distinct patients” approach to table construction, w00+w01+w10+w11 (denoted w++) equals 
the total number of patients in the database. w00 is the number of patients that had a drug A 
era and experienced condition X during a drug A era. w01 is the number of patients that had a 
drug A era and did not experience condition X during a drug A era. w10 is the number of 
patients that did not have a drug A era but experienced condition X. w11 is the number of 
patients that did not have a drug A era and never experienced condition X. Thus, for the 
example of Figure 1, w00=1 (patient 1), w01=1 (patient 2), w10=1 (patient 3), and w11=0. Note 
that w++=3. 
 
4.2 SRS 
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The second approach attempts to mimic what SRS reports the longitudinal data would 
generate, in that the observed co-occurrence of a drug and outcome is treated as if it were 
reported as a spontaneous case. w00 is the number of distinct X conditions the occur during 
drug A eras. w01 is the number of distinct non-X conditions that occur during drug A eras. w10 
is the number of distinct X conditions that occur during non-A drug eras. w11 is the number of 
distinct non-X conditions that occur during non-A drug eras. Thus, for the example of Figure 
1, w00=3 (A+X1, A+X2, A+X3), w01=0, w10=1 (B+X5), and w11=2 (B+O1,C+O1). 
  
 
4.3 Modified-SRS 
A third approach augments the SRS-like reports with additional denominator-based 
information about exposures without outcomes and outcomes that occurred without prior 
exposure.  This approach attempts to patch obvious weaknesses of the SRS approach by 
taking advantage of the other information available in the LODs. Specifically, whereas the SRS 
systems do not contain the total number of drug exposures, only those exposures that were 
co-reported with an adverse event, LODs offer the potential to measure the number of event-
free exposures.  Similarly, the background rate of events is not well captured in SRS, since only 
drug-related events are recorded, whereas LOD can provide information about conditions that 
occur independently from drug exposures. The modified SRS approach counts “non-event” 
drug eras and “non-drug” conditions that can be combined with all drug-related events prior 
to calculating the disproportionality measures. In this approach, as with SRS, w00 is the number 
of distinct X conditions that occur during drug A eras. w01 however, is the number of distinct 
non-X conditions that occur during drug A eras plus the number of A eras in which no events 
occur. w10 is the number of distinct X conditions that occur outside drug A eras. w11 is the 
number of distinct non-X conditions that occur during non-A drug eras plus the number of 
non-A drug eras with no conditions plus the number of non-X conditions with no drug era. 
Thus, for the example of Figure 1, w00=3 (A+X1, A+X2, A+X3), w01=1 (patient 2’s A era), 
w10=3 (X4, B+X5, X6), and w11=4 (patient 2’s C era, B+O1,C+O1, O2). 
 
 
Our application of disproportionality methods to longitudinal data also makes a distinction 
between incident and prevalent conditions. The incident case only considers the first 
occurrence of each event, whereas the prevalent case (considered in the above example) 
considers all occurrences. Thus, for the example above, the incident analysis would proceed as 
above but only consider the first event of each type. Figure 2 illustrates the modified dataset 
used in an incident analysis. Note that our use of the term “incident” does not necessarily 
coincide with standard use of this term in epidemiological practice. In particular, we do not 
require an event-free “clean” period prior to first condition occurrence.  
 

 
Figure 2. A longitudinal dataset with three patients, three distinct drugs (A, B, and C) 
and two distinct conditions (X and O). Incident conditions only. 
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Three mapping approaches, distinct patients, SRS, and modified SRS, together with two 
condition types, prevalent and incident, produce six mapping scenarios: distinct patients - 
prevalent, distinct patients - incident, SRS - prevalent, SRS - incident, modified SRS -prevalent, 
and modified SRS - incident. 
 
In this study we use 9 disproportionality measures: PRR, PRR05 (left bound of the 90% 
confidence interval for PRR), ROR, ROR05 (left bound of the 90% confidence interval for 
ROR), IC, IC05 (lower credibility limit for 90% credibility interval for IC), EBGM, EB05, and 
signed Chi-square. See Appendix A for additional details.  
 
 
 
 
5. Data and Evaluation Procedure 
 
5.1 Real Data 
 
In the numerical experiments reported below, we use de-identified Thomson Reuters 
MarketScan Lab database (MSLR). MSLR contains 1.5 million persons representing a largely 
privately-insured population, with administrative claims from inpatient, outpatient, and 
pharmacy services supplemented by laboratory results. We also successfully executed all 
mentioned above LOD mapping approaches and calculated disproportionality metrics on 
several other de-identified Thomson Reuters databases: Medicaid Multi-State database 
(MDCD), Medicare Supplemental and Coordination of Benefits database (MDCR), and 
Commercial Claims and Encounters database (CCAE). These three databases contain medical 
records of 5 million, 11 million, and 59 million persons respectively. 
 
5.2 Simulated Data 
 
For performance evaluation purposes, we used a simulated database (OSIM). OSIM is 
modeled after real observational databases. It contains information on 10 million simulated 
persons, 5000 simulated drugs, and 4000 simulated conditions. Database date range is 10 years. 
Because of simulated nature of the data, the list of true drug-condition associations is available, 
enabling quantitative comparison of the different measures of disproportionality.    
 
5.3 Mean Average Precision 
To compare the performance of different disproportionality methods, we use “mean average 
precision” (MAP), a scoring method widely used in text retrieval. Higher values of a MAP 
score indicate better performance. Let 1=dcy  if the dth drug causes the cth condition and 0 

otherwise, d=1,…,D, c=1…,C. Let ∑=
cd

dcyM
,

denote the number of causal combinations and 

 

N = D×C the total number of combinations. Note it is generally the case that NM << . Let 

dcz  denote the score (EBGM, IC, PRR, etc.) for the dth drug and the cth condition. For a 

given set of predicted values ),,( 11 dczzz 
 = , we define “precision-at-K” denoted )()( zP K  as 

the fraction of causal combinations amongst the K  largest predicted values in z  (Madigan et 
al., 2006). Specifically, let )()1( Nzz >>  denote the ordered values of z . Then:  
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∑
=

=
K

i
i

K y
K

zP
1

)(
)( 1)( , 

where

 

y(i) is the causal status of the combination corresponding to

 

z(i). The mean average 
precision or MAP score, S , is then: 
 

∑
=

=
1:

)(

)(

)(1

KyK

K zP
M

S 
. 

If there are ties in z , the results are ordered such that negative drug-condition combinations, 
i.e. combinations such that 0=dcy , go first. The precision of tied positive combinations, i.e. 

combinations such that 1=dcy , is calculated as if they were all encountered at the same time, 

i.e. if )1()( += KK zz , then  )()( )1()( zPzP KK  += .  
Table 4 contains hypothetical drug-condition pairs and their scores. Suppose that there are 3 
drugs, D1, D2, and D3, and 3 conditions, C1, C2, and C3. But only 5 pairs, D1-C1, D1-C2, 
D2-C1, D2-C2 and D3-tC3 are causal combinations and the remaining pairs are not. Table 5 
illustrates the scoring process.  
 
Table 4. Sample data: 3 drugs, 3 conditions; yi =1 if drug-condition combination is positive, yi 

=0 otherwise. 
 

Drug Condition Score (z) Truth (y) 
 

D1 
C1 5 1 
C2 0 1 
C3 9 0 

 
D2 

C1 8 1 
C2 5 1 
C3 0 0 

 
D3 

C1 0 0 
C2 0 0 
C3 5 1 
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Table 5. Illustration of the MAP methodology. 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
In some cases, not every possible drug-condition combination may be assigned a score. Pairs 
without a valid score are treated as if they were given the lowest possible score value. In table 5 
these pairs would be placed after all scores that were actually observed.  
 
6. Results 
 
6.1 Application to simulated data 
 
Disproportionality analysis methods were computationally efficient, executing against the 
simulated dataset with 10 million persons for 4000 drugs and 5000 conditions and 4.9 x 108  
drug-condition co-occurrences.  All analyses were able to complete in less than 24 hours, 
running in a single 64-bit computer with 2.67 GHz I-7 CPU and 12 GB of RAM. 
 
Figure 3 shows scatterplots of the various disproportionality measures (on the logarithmic 
scale) for a random sample of 1000 drug-condition pairs for the SRS-prevalent scenario.  
PRR and ROR scores are very similar, as it is almost always the case with the LOD data that 
w00 is much smaller than w01, and the same is true for w01 and w11. Due to the same rationale, 
PRR05 and ROR05 scores are extremely close as well. IC and EBGM, both being shrinkage 
estimators, show quite similar behavior, as do IC05 and EB05. Scatterplots of PRR versus 
EBGM (PRR vs. IC, PRR vs. IC05, ROR vs. EBGM, PRR vs. EB05, etc.) shows greater 
variability because PRR gives similar to EBGM results when cell counts, w00, are large but PRR 
is less stable for small counts (Madigan, 1999). Signed Chi-square scores are qualitatively 
different from other measures of disproportionality. We observed similar relationships in the 
other five analysis scenarios: distinct patients-incident, distinct patients – prevalent, SRS-
incident, modified SRS-prevalent, and modified SRS-incident.  
 
 

  Sorted 
Values 

 

Drug Condition   z   y P(K) 
D1 C3 9 1 1/1=1 
D2 C1 8 1 2/2=1 
D3 C3 5 0  
D1 C1 5 1 3/4=0.75 
D2 C2 5 1 4/5=0.8 
D2 C3 0 0  
D3 C1 0 0  
D3 C2 0 0  
D1 C1 0 1 5/9=0.55 

MAP = (1 + 1 + 0.75 +0.8 +0.55) / 5 = 0.82 
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Figure 3. Prevalent events -SRS (simulated data). Scatterplots (on the logarithmic 
scale) of nine measures of disproportionality for the SRS – prevalent scenario on the 
simulated data. 
 
 
Figure 4 illustrates the EBGM scores across the six different table construction scenarios. It is 
interesting to note that for the same counting approach, distinct patients, SRS, or modified 
SRS, scores are often similar across different event types, prevalent or incident. Distinct 
patient counting approach shows similar scores for both prevalent and incident event types. 
SRS counting approach shows the same. It is also worth noting that SRS -prevalent scores are 
similar to both SRS - incident and modified SRS - incident scores.   
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Figure 4. EBGM scores across six scenarios (simulated data). Scatterplots of EBGM 
scores across six scenarios: Distinct patients - prevalent, SRS - prevalent, modified SRS 
- prevalent, distinct patient - incident, SRS - incident, modified SRS - incident.  
 
 
6.2 Performance on simulated data 
Figure 5 presents MAP scores for all six approaches to table construction (distinct patients, 
SRS, and modified SRS for both prevalent events and incident events) and nine different 
scoring approaches  (PRR, ROR, IC, EBGM, signed Chi-square, PRR05, ROR05, IC05, and 
EB05).  
Figure 5 shows that  

- Both the SRS and modified SRS counting approaches provide similar performance for 
both incident and prevalent cases; 

- the distinct patients approach to table construction provides inferior performance to 
the other two counting approaches, SRS and modified SRS; 
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- the Bayesian approaches to scoring, IC and EBGM, provide the highest levels of 
performance, with signed Chi-square, IC05 and EB05 not far behind. 

- For all three counting approaches, distinct patients, SRS, and modified SRS, ROR and 
PRR provide the lowest MAP scores. 

 

 
 

Figure 5. MAP Scores for DP Methods (simulated data). Scores for all six approaches 
to table construction and nine different scoring approaches. 
 
 
6.3 Application to the Real Data 
 
Whereas spontaneous reporting databases contain several million records, LODs can contain 
more than one order of magnitude in data size, so computational feasibility remains central to 
efficient analysis.  In this study, all disproportionality analysis configurations were executed 
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against all drugs and all conditions across the 5 databases.  In the largest database, CCAE, 
there were over 4.4 billion drug-condition co-occurrences identified over 1451 drugs and 
11844 conditions.  All analyses were able to complete in less than 24 hours.  
Figure 6 shows various scores (on the logarithmic scale) for a random sample of 1000 drug-
condition pairs for the SRS-prevalent scenario on the MSLR data. Key findings are similar to 
what we observed on the simulated data: 

- PRR and ROR are very close to each other, as are PRR05 and ROR05; 
- Bayesian shrinkage approaches, IC and EBGM, IC05 and EB05, show agreement on 

most of the drug/condition pairs; 
- Scatterplots of PRR vs. EBGM (and other similar metrics) have several branches 

because amount of shrinkage depends on observed cell count; 
- signed chi-square scores behave differently from other measures of disproportionality.   

Similar findings apply to the SRS-incident, modified SRS-prevalent, modified SRS-incident, 
and distinct patient prevalent and incident scenarios.  
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Figure 6. Prevalent events - SRS (MSLR). Scatterplots (on the logarithmic scale) of 
nine measures of disproportionality for the SRS – prevalent scenario on MSLR. 
 
Figure 7 shows EBGM scores on MSLR data across all six table construction scenarios. As on 
the simulated data, EBGM scores on MSLR show good agreement for both event types, 
prevalent and incident. Distinct patient prevalent and incident scores are quite similar, as well 
as SRS-prevalent and SRS-incident, modified SRS - prevalent and modified SRS- incident. 
Within each event type, prevalent and incident, SRS and modified SRS scores are close. 
 
 
 

 
Figure 7. EBGM scores across six scenarios (MSLR data). Scatterplots of EBGM 
scores across six scenarios: distinct patients - prevalent, SRS - prevalent, modified SRS 
- prevalent, distinct patient - incident, SRS - incident, modified SRS - incident. 
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7. Conclusions 
 
There is a significant interest in utilization of observational health care data in drug safety 
research. Statistical methods based on different measures of disproportionality were among the 
first employed in pharmacovigilance (Finney, 1971).  Therefore it seems natural to extend 
these methods to the analysis of longitudinal data. This article is the first systematic attempt of 
such an extension. 
 
We propose three counting approaches, distinct patients, SRS, and modified SRS, which in 
conjunction with two event types, prevalent or incident, lead to six different mappings of 
LOD into the form appropriate for disproportionality analysis.  
 
In the numerical experiment, we considered nine measures of disproportionality. Among those 
nine, shrinkage approaches, IC and EBGM, showed the best performance on the simulated 
data with respect to MAP, closely followed by the derivative shrinkage measures, EB05 and 
IC05, and signed Chi-square test. No metric performed perfectly suggesting that further 
analysis of outputs of any dispropiortionality metric would be needed to prevent false positive 
and false negative results. Qualitative comparison of the results from the simulated dataset and 
MSLR data suggests that the same set of disproportionality measures and similar mapping 
approaches, SRS and modified SRS, may achieve the best performance on real data. Further 
research will help to test these hypotheses. 
 
While spontaneous adverse drug reaction databases may contain up to several million reports, 
disproportionality analysis of observational health databases involves much larger amount of 
data because each person may contribute numerous reports over time. Nevertheless we are 
able to complete all calculations for disproportionality analysis even on a database that 
contains information on almost sixty million people. The feasibility of such large scale 
screening of LOD is promising. This opens new possibilities in pharmacovigilance research 
and, eventually, will contribute to improved drug safety. The results presented here will also 
serve as a benchmark for comparison when in the future other statistical methods are applied 
to the same data sets. Software for all of the methods described in this paper is freely available 
at http://omop.fnih.org. 
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APPENDIX A. Formulae for measures of disproportionality       
 
Let us assume that for each stratum i  we calculated 2-dimesional summary that is shown in 
table 6. Let iN  be the sum of all cell counts, 11100100 iiiii WWWWN +++= . 

Table 6. Counts for the ith stratum.  
 AE Yes AE No 

Drug Yes Wi00 Wi01 
Drug No Wi10 Wi11 

 
Using these counts we can define stratified measures of disproportionality.     
 
PRR, proportional reporting ratio: 
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ROR, reporting odds ratio: 
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ROR05, left bound of the 90% confidence interval for ROR: 
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IC, Information component: 
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IC05, lower credibility limit for 90% credibility interval for IC: 
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  where  
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For more details regarding IC and IC05 see (Norén et al. 2008, Bate et al. 1998). 
 
Signed Shi-square: 
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Details regarding EBGM, geometric mean of the empirical Bayes estimate of the posterior 
distribution of the reporting ratio, and EB05, its 5th percentile, can be found in reference 
(DuMouchel, 1999, DuMouchel and Pregibon, 2001). 
 

 
APPENDIX B. Mapping approaches for longitudinal data 
 
This appendix provides a formal mathematical definition of the alternative methods of 
constructing two-by-two tables from longitudinal data for disproportionality analysis. 
 
Notation 
Let 

 

yict = 1 if patient i has condition c at time t, and

 

yict = 0 otherwise, i=1,…,I, c=1,…C, and 
t=1,…,T. Let 

 

xidt = 1 if patient i “takes” drug d at time t, and

 

xidt = 0 otherwise, i=1,…,I, 
d=1,…D, and t=1,…,T. This may include the user-defined off-drug “surveillance” window. 
Let . Let 

 

zit = 1 if patient i has coverage 
at time t, 0 otherwise. 
 
Let 

 

Did  be the set of all ordered pairs (r,s), r,s ∈{1,…,T}, where 

 

xidr = 1 and (r=1 or 

 

xid(r−1)
=0), 

 

xids = 1 and (s=T or 

 

xid(s+1)=0), and 

 

yict = 0 for all c and all t ∈[r,…,s], and 

 

zit = 1 for all t 
∈[r,…,s]. This defines condition-free periods of continuous drug exposure. 
 
Define I(x) = 1 if x>0, 0 otherwise. 
 
 
Prevalent Conditions, Distinct Patients 

 

 

Prevalent Conditions, SRS 
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Prevalent Conditions, Modified-SRS 

 

 

 

 

 

For incident conditions replace 

 

yict  in the above definitions by . 
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