Bayesian Logistic Regression for Medical Claims Data

Ivan Zorych, Patrick Ryan, David Madigan

Outline

- Drug safety data
- Problems with 2x2 approaches
- Bayesian logistic regression for SRS data
- Bayesian logistic regression approach to observational data

Typical Entry in SRS database

Age	Sex	Drug 1	Drug 2	 Drug 15000	AE 1	AE	2	AE 16000
42	Male	No	Yes	 No	Yes	No		Yes

 SRS datasets resemble spreadsheets with up to millions of rows (one per report) and tens of thousands of columns

Existing Methods

- Multi-item Gamma Poisson Shrinker (MGPS)
 - US Food and Drug Administration (FDA)
- Bayesian Confidence Propagation Neural Network
 - WHO Uppsala Monitoring Centre (UMC)
- Proportional Reporting Ratio (PRR)
 - UK Medicines Control Agency (MCA)
- Reporting Odds Ratios and Incidence Rate Ratios
 - Other national spontaneous reporting centers and drug safety research units

Different Measures

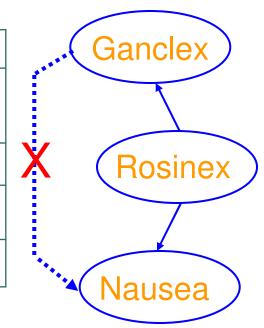
	AE	All other AE
Drug	а	b
All other	С	d
drugs		

Measure of Association	Formula	Probabilistic Interpretation	
RR Relative Risk*	<u>a</u> * (a + b + c + d)	$\frac{\Pr(ae \mid drug)}{\Pr(ae)}$	
DDD	(<u>a</u> + c) * (a + b)		
PRR Proportional Reporting Ratio	a / (a + b) c / (c + d)	$\frac{\Pr(ae \mid drug)}{\Pr(ae \mid \neg drug)}$	
ROR Reporting Odds Ratio	a / c b / d	$\frac{\Pr(ae \mid drug)/\Pr(\neg ae \mid drug)}{\Pr(ae \mid \neg drug)/\Pr(\neg ae \mid drug)}$	
Information Component	(<u>a</u> * (a + b + c + d) Log ₂ (<u>a</u> + c) * (a + b)	$\log_2 \frac{\Pr(ae \mid drug)}{\Pr(ae)}$	

Innocent bystander problem

 Contingency table analysis ignores effects of drug-drug association on drug-AE association

	Rosinex		No F	Rosinex	Total	
	Nausea	No Nausea	Nausea	No Nausea	Nausea	No Nausea
Ganclex	81	9	1	9	82	18
No Ganclex	9	1	90	810	99	811
OR	1		1		37.3	



Logistic Regression

$$\log \frac{\Pr(Nausea)}{\Pr(Not\ Nausea)} = \beta_0 + \beta_1 \times \text{Rosinex} + \beta_2 \times \text{Ganclex}$$

SAS and R-package give the following estimations:

Adjusted odds ratio exp(beta2)=1 indicates no association between Ganclex and Nausea.

Regression and health data

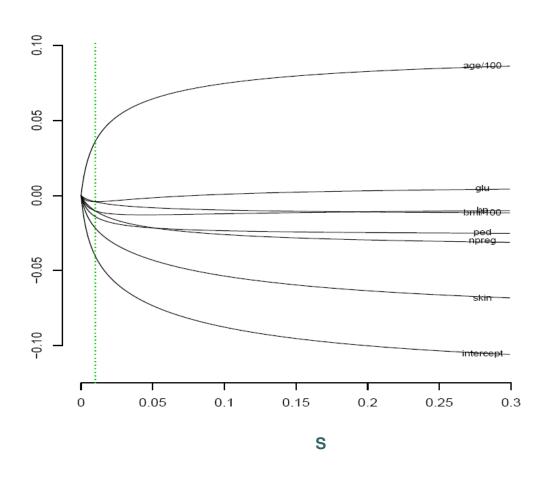
- Drug safety data sets are sparse
- Typical AERS report contains just a few drugs and a few adverse events
- Dependent variable in the regression:
 Y=1 if AE is present, 0 otherwise;
- Number of independent variables = number of drugs + sex/age/year info

Ridge logistic regression*

- Maximum likelihood
- o and restrictions on coefficients:

$$\sum_{j=1}^{P} \beta_j^2 \le s$$

Profiles of the regression coefficients



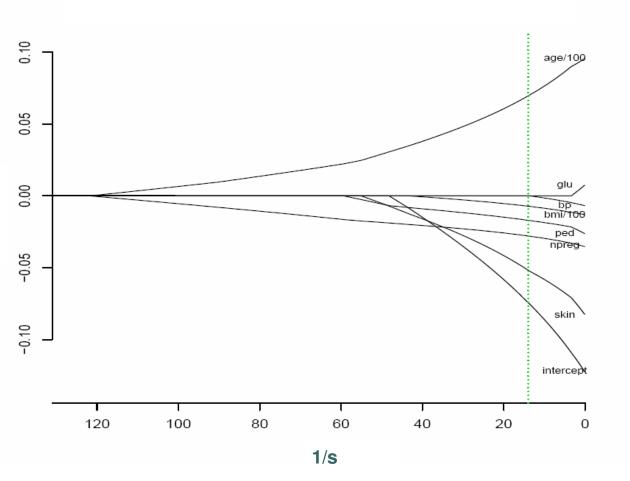
Lasso*

- Maximum likelihood
- o and restrictions on coefficients:

$$\sum_{j=1}^{P} \left| \beta_{j} \right| \leq s$$

 Does subset selection by shrinking some coefficients to zero

Profiles of the regression coefficients



Bayesian Regression

- Two shrinkage methods
 - Ridge regression Gaussian prior

$$p(\beta_i \mid tau) \sim N(0, tau)$$

Lasso regression - Laplace prior

$$p(\beta_j | \lambda) = \lambda/2 \exp\{-\lambda |\beta_j|\}$$

- \circ Choosing hyperparameter λ
 - Decide how much to shrink
 - Cross-validation: choose prior to fit left-out data

Bayesian Logistic Regression

Software: Bayesian Binary Regression (BBR)*

http://www.stat.rutgers.edu/~madigan/BBR/

http://www.bayesianregression.org/

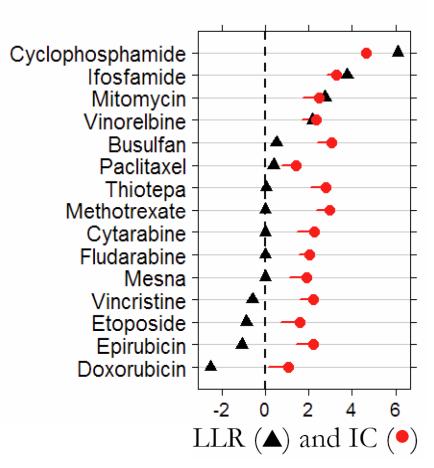
- Two priors: Gaussian and Laplace
- Hyperparameter choice: fixed, CV, etc.
- Handles millions of predictors efficiently

^{*}D. Madigan et al., (2007), Large-Scale Bayesian Logistic Regression for Text Categorization, Technometrics, vol.49, #3.

Vioxx / Transient ischemic attack

Year	N of reports	EBGM rank	BBR rank (Normal priors with CV)
1999	1	593	545
2000	26	351	70
2001	60	316	33
2002	100	431	55
2003	130	459	51

Confounding, real AERS data*



- ADR: hemorrhagic cystitis, diffuse inflammation of the bladder leading to dysuria, hematuria, and hemorrhage;
- ADR most often seen in female cancer patients as a complication of therapy;
- Drugs: anticancer drugs and mesna;
- Mesna is an adjuvant used in cancer chemotherapy involving cyclophospamide and ifosfamide.

^{*}Caster, Noren, Bate, Madigan, 2010

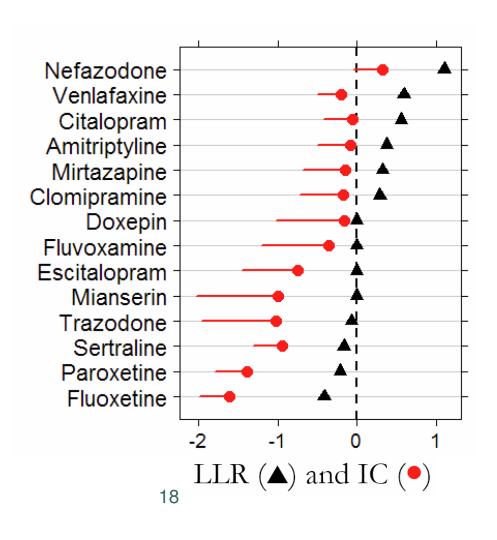
Masking

Typical DP measures are based on

$$\frac{\Pr(AE|Drug)}{\Pr(AE)}$$

- Masking: effect when the background rate of the ADR, Pr(AE), is distorted due to massive reporting with other drug(s);
- Example: Rhabdomyolysis and Cerivastatin (Baycol, Lipobay) is a synthetic member of the class of statins;
- Cerivastatin was voluntarily withdrawn from the market worldwide in 2001 due to reports of fatal rhabdomyolysis.

Masking, real AERS data*



- ADR: Rhabdomyolysis, rapid breakdown of skeletal muscle;
- Drugs: a set of anti-depressant drugs;

Weakness of SRS Data

- Passive surveillance
 - Underreporting
- Lack of accurate "denominator", only "numerator"
 - "Numerator": No. of reports of suspected reaction
 - "Denominator": No. of doses of administered drug
- No certainty that a reported reaction was causal
- Missing, inaccurate or duplicated data

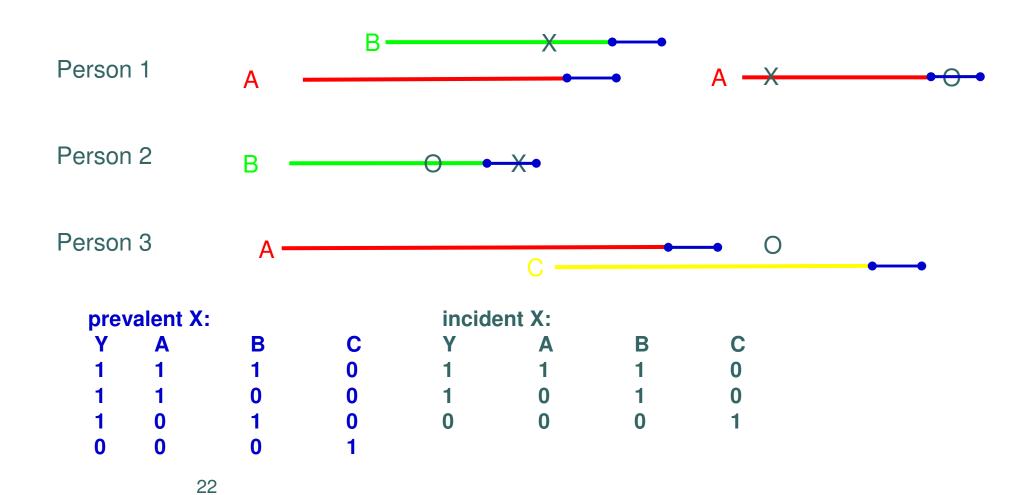
Longitudinal observational data

- Health claims records, electronic medical records
- Information on drug prescriptions, doctor visits, hospitalization

BLR and observational data

- It is relatively easy to apply Bayesian regression to AERS/SRS data.
- Situation with temporal data is more complicated. We need to create predictors for the regression analysis.

Logistic regression for observational data



BLR parameter file

```
CONDITION_TYPE_PREVALENT_1_INCIDENT_2: 1
PRIOR_TYPE_LAPLACE_1_NORMAL_2: 1
PRIOR_VARIANCE: 1
INCLUDE_AGE_0_(NO)_OR_1_(YES): 1
INCLUDE_SEX_0_(NO)_OR_1_(YES): 1
SIZE_OF_THE_NO_CONDITION_PART: 1000000
RISK_WINDOW_IN_DAYS: 30
DRUG_PERSISTENCE_WINDOW_DAYS_0_OR_30: 30
CONDITION_PERSISTENCE_WINDOW_DAYS_0_OR_30: 30
NUMBER_OF_SPLITS: 5
DAYS_FROM_THE_DRUG_ERA_START: 1
DRUG_ERA_TABLE: OMOP_DRUG_ERA
CONDITION_ERA_TABLE: OMOP_CONDITION_ERA
```

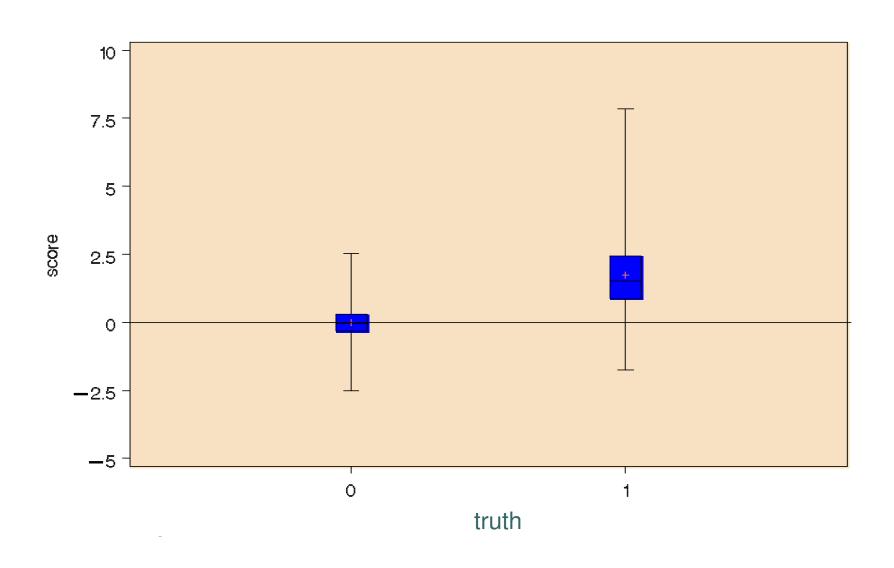
Simulated Data

- o 10 000 000 persons
- 5000 drugs
- 4519 conditions; 519 of conditions are 'indications' that don't have any causal relationship with drugs
- 22,595,000 drug-condition pairs;

Computational side

- Each condition requires fitting of a separate regression
- Parallelization via SAS/CONNECT
- o Amazon Cloud:
 - 68.4 GB of memory
 - 26 EC2 Compute Units (8 virtual cores with 3.25 EC2 Compute Units each)
 - 1690 GB of local instance storage
- Typical performance (OSIM on the cloud): 12 hours on the cloud (24 parallel runs);
- OMOP stat server: Sun M5000 6X2
 - 2.14Ghz CPU(s)
 - 32G Memory
 - 48 Gb Swap space
- Code available from http://omop.fnih.org/MethodsLibrary

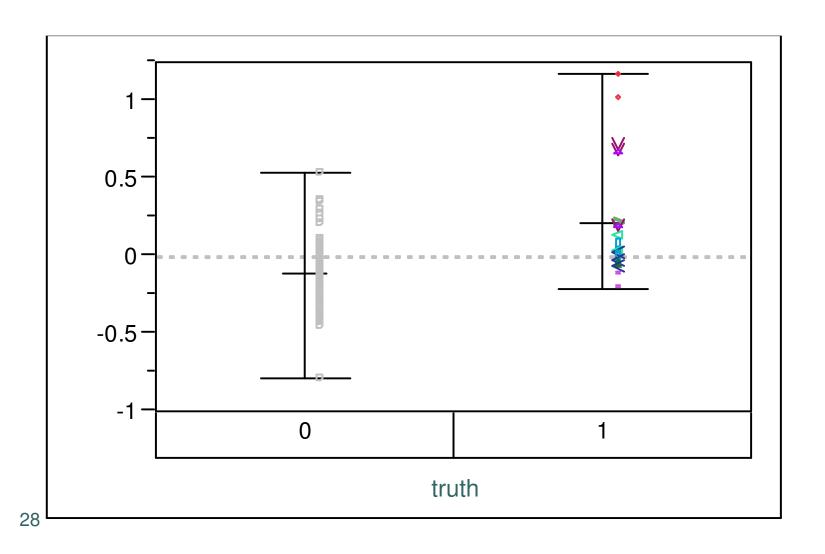
Scores for the OSIM data



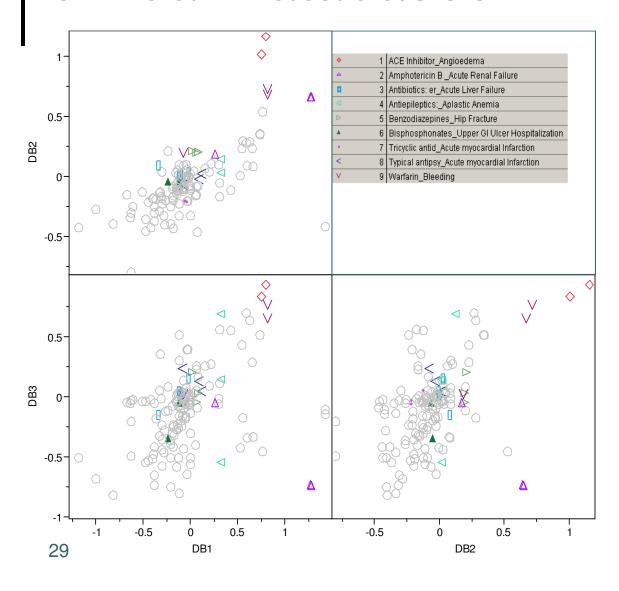
OMOP cup and BLR on OSIM (Simulated Data)

```
MAP score
Participant 1
               0.2662359
Participant 2
               0.2570616
Participant 3
               0.2569417
Participant 4
               0.2569404
Participant 5
               0.2568678
               0.2557354 (same run, exclude 'indications')
BLR
Participant 6
               0.2483813
Participant 7
               0.2483137
Participant 8
               0.2358521
BLR
               0.2356831 (run: c2p2v1b1s0dw0cw0a0sx0)
Random
               0.0157622
27
```

Real DB (preliminary data)



3 Real Databases



Discussion of Logistic Method

- Advantages over low-dimensional tables
 - Correct confounding and mask effect
 - Analyze multiple drugs/vaccines simultaneously
- Limitations
 - Build separate model for each AE
 - Ignore dependencies between AEs
 - Fail to adjust for unmeasured/unrecorded factors
 - health status, unreported drugs, etc.